Perlin noise
Log in to post a comment.
// Forked from "Gaussian mountains" by Alexjust
// https://turtletoy.net/turtle/c0af204ebf
Canvas.setpenopacity(-1);
let dens = 5 // min=1, max=10, step=1
dens=1/dens
const turtle = new Turtle();
const width = 90;
const zstart = 80;
const layer = dens*6;
const layers = 27/dens;
const perspective = 0.7*dens+0.07;
turtle.penup();
let h=0;
const leeway=29 // min=0, max=30, step=1
const amp=6 // min=-10, max=10, step=0.1
const res =1 // min=1, max=10, step=1
const rows = 600
const scale = 21.3 // min=0, max=40, step=0.1
const rad = 19 // min=0, max=50, step=1
const vermult = 1 // min=0, max=20, step=1
const cols = 600
const filledge = 1 //min=0, max=1, step=1
let gaussMat = generatePerlinNoiseMatrix(rows, cols, scale);
gaussMat = applyGaussianBlur(gaussMat, rad)
function walk(i) {
const left = -width + perspective * i;
const right = width - perspective * i;
const z = zstart - layer * i;
if (filledge==1){
turtle.penup();
turtle.goto(-500, z);
turtle.pendown();
turtle.goto(left, z);
turtle.penup();
turtle.goto(500, z);
turtle.pendown();
turtle.goto(right, z);
turtle.penup()
}
turtle.goto(left, z);
let u = 0;
for (let n = left; n < right; n += res) {
if (n < left + leeway ) {
h = z + gaussMat[u][i*vermult]*amp*(Math.sin((n-left)/leeway)*1.21603709862);
console.log((Math.sin((n-left)/leeway)*1.21603709862))
} else if(n > right - leeway){
h = z + gaussMat[u][i*vermult]*amp*(Math.sin((right-n)/leeway)*1.21603709862);
}
else{
h = z + gaussMat[u][i*vermult]*amp;
}
turtle.goto(n, h);
turtle.pendown();
u+=1;
}
turtle.goto(right, z);
turtle.penup();
return i < layers;
}
function generateGaussianNoiseMatrix(rows, cols, scale, mean) {
const noiseMatrix = [];
for (let i = 0; i < rows; i++) {
const row = [];
for (let j = 0; j < cols; j++) {
const u1 = 1 - Math.random();
const u2 = 1 - Math.random();
const z0 = Math.sqrt(-2 * Math.log(u1)) * Math.cos(2 * Math.PI * u2);
const z1 = Math.sqrt(-2 * Math.log(u1)) * Math.sin(2 * Math.PI * u2);
const noiseValue = mean + scale * z0;
row.push(noiseValue);
}
noiseMatrix.push(row);
}
return noiseMatrix;
}
// Function to apply Gaussian blur to a matrix
function applyGaussianBlur(matrix, radius) {
const kernelSize = radius * 2 + 1;
const kernel = [];
for (let i = 0; i < kernelSize; i++) {
const row = [];
for (let j = 0; j < kernelSize; j++) {
const x = i - radius;
const y = j - radius;
const weight = Math.exp(-(x * x + y * y) / (2 * radius * radius));
row.push(weight);
}
kernel.push(row);
}
const blurredMatrix = [];
for (let i = 0; i < matrix.length; i++) {
const newRow = [];
for (let j = 0; j < matrix[i].length; j++) {
let sum = 0;
let totalWeight = 0;
for (let ki = 0; ki < kernelSize; ki++) {
for (let kj = 0; kj < kernelSize; kj++) {
const mi = i - radius + ki;
const mj = j - radius + kj;
if (mi >= 0 && mi < matrix.length && mj >= 0 && mj < matrix[i].length) {
sum += matrix[mi][mj] * kernel[ki][kj];
totalWeight += kernel[ki][kj];
}
}
}
newRow.push(sum / totalWeight);
}
blurredMatrix.push(newRow);
}
return blurredMatrix;
}
function generatePerlinNoiseMatrix(width, height, frequency) {
const grid = [];
for (let i = 0; i < width; i++) {
grid.push([]);
for (let j = 0; j < height; j++) {
const angle = Math.random() * 2 * Math.PI;
grid[i].push({ x: Math.cos(angle), y: Math.sin(angle) });
}
}
function dotProductGradient(x, y, gradient) {
return (x * gradient.x) + (y * gradient.y);
}
function interpolate(a, b, t) {
return (1 - t) * a + t * b;
}
function smoothstep(t) {
return t * t * (3 - 2 * t);
}
const noiseMatrix = [];
for (let y = 0; y < height; y++) {
noiseMatrix.push([]);
for (let x = 0; x < width; x++) {
const cellX = Math.floor(x / frequency);
const cellY = Math.floor(y / frequency);
const topLeft = dotProductGradient(x - cellX * frequency, y - cellY * frequency, grid[cellX][cellY]);
const topRight = dotProductGradient(x - (cellX + 1) * frequency, y - cellY * frequency, grid[cellX + 1][cellY]);
const bottomLeft = dotProductGradient(x - cellX * frequency, y - (cellY + 1) * frequency, grid[cellX][cellY + 1]);
const bottomRight = dotProductGradient(x - (cellX + 1) * frequency, y - (cellY + 1) * frequency, grid[cellX + 1][cellY + 1]);
const tx = smoothstep((x - cellX * frequency) / frequency);
const ty = smoothstep((y - cellY * frequency) / frequency);
const interpolateTop = interpolate(topLeft, topRight, tx);
const interpolateBottom = interpolate(bottomLeft, bottomRight, tx);
noiseMatrix[y].push(interpolate(interpolateTop, interpolateBottom, ty));
}
}
return noiseMatrix;
}