Log in to post a comment.
// Centripetal Catmull-Rom Splines. Created by Reinder Nijhoff 2022 - @reindernijhoff // The MIT License // // https://turtletoy.net/turtle/01e218e32f // // Catmull-Rom Splines utility code. Based on: // https://qroph.github.io/2018/07/30/smooth-paths-using-catmull-rom-splines.html // Canvas.setpenopacity(.75); const turtle = new Leonardo(); const alpha = 0.5; // min=0, max=1, step=0.001 const tension = 0; // min=0, max=1, step=0.001 const shape = 1; // min=0, max=1, step=1 (Box, Circle) const border = 0; // min=-50, max=100, step=1 const iterations = 20; // min=2, max=2000, step=1 turtle.alpha = alpha; turtle.tension = tension; function walk(i) { if (shape === 0) { const x = Math.random() * 2 - 1; const y = Math.random() * 2 - 1; turtle.goto(x*(100-border), y*(100-border)); } else { const a = Math.PI * Math.random() * 2; const r = Math.random() ** 2; turtle.goto(Math.sin(a)*(100-border)*r, Math.cos(a)*(100-border)*r); } return i < iterations; } //////////////////////////////////////////////////////////////// // Centripetal Catmull-Rom Splines utility code. Created by Reinder Nijhoff 2022 // https://turtletoy.net/turtle/01e218e32f // https://qroph.github.io/2018/07/30/smooth-paths-using-catmull-rom-splines.html //////////////////////////////////////////////////////////////// function Leonardo(x, y) { function scl2(a,b) { return [a[0]*b, a[1]*b]; } function add2(a,b) { return [a[0]+b[0], a[1]+b[1]]; } function sub2(a,b) { return [a[0]-b[0], a[1]-b[1]]; } function len2(a) { return Math.sqrt(a[0]**2 + a[1]**2); } function dist2(a, b) { return len2(sub2(a,b)); } class Leonardo extends Turtle { constructor(x, y) { super(x, y); this.alpha = 0; this.tension = 0; } goto(x, y) { const p = Array.isArray(x) ? [...x] : [x, y]; this.path = this.path ? this.path : []; this.path.push(p); if (this.isdown() && this.path.length >= 4) { this.path = this.path.slice(-4); this.catmullRomSpline(...this.path); } else if (!this.isdown()) { this.path = [p]; } } catmullRomSpline(p0, p1, p2, p3) { const subdiv = dist2(p1, p2)|0 + 1; const t01 = Math.pow(dist2(p0, p1), this.alpha); const t12 = Math.pow(dist2(p1, p2), this.alpha); const t23 = Math.pow(dist2(p2, p3), this.alpha); const m1 = scl2( add2(sub2(p2, p1), scl2( sub2(scl2( sub2(p1, p0), 1 / t01), scl2( sub2(p2, p0), 1 / (t01 + t12))), t12)), 1 - this.tension); const m2 = scl2( add2(sub2(p2, p1), scl2( sub2(scl2( sub2(p3, p2), 1 / t23), scl2( sub2(p3, p1), 1 / (t12 + t23))), t12)), 1 - this.tension); const a = add2( add2( scl2(sub2(p1, p2), 2), m1), m2); const b = sub2( sub2( sub2( scl2(sub2(p1, p2), -3), m1), m1), m2); if (this.isdown() && (this.x() != p1[0] || this.y() != p1[1])) { this.penup(); super.goto(p1); this.pendown(); } for (let i=0; i<subdiv; i++) { const t = i/subdiv; super.goto(add2( add2( add2 ( scl2(a, t * t * t), scl2(b, t * t)), scl2(m1, t)), p1)); } super.goto(p2); } } return new Leonardo(x,y); }