Thanks to flockaroo's torus turtle torus and the equation from OSX grapher app.
Log in to post a comment.
// created by Andrew Lamoureux (andrewl) - 2018
// License Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.
// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(.25);
// Global code will be evaluated once.
const turtle = new Turtle();
turtle.pendown()
const screen_width = 200
const screen_height = 200
var xrot = Math.PI/3.7 /* in radians */
const scale = 19
const shifty = -19
const shiftx = 4
const ticks_toroid = 100
const ticks_cross_section = 50
const npoints = ticks_toroid * ticks_cross_section
function get_knot_point(i) {
// point index -> (t, u)
ti = Math.floor(i/ticks_cross_section)
ui = i % ticks_cross_section
t = ti/ticks_toroid * 2*Math.PI
u = ui/ticks_cross_section * 2*Math.PI
// eval parametric equations -> polar coords
r0 = scale*(3 + msin(t) + mcos(u))
theta = 2*t
z = scale*(msin(u) + 2*mcos(t))
// polar -> cartesian
x = r0*mcos(theta) + shiftx
y = r0*msin(theta) + shifty
return [x,y,z]
}
// The walk function will be called until it returns false.
function walk(i) {
// this point
pi = get_knot_point(i)
// next point in this cross section
if((i+1) % ticks_cross_section == 0)
pj = get_knot_point(i-ticks_cross_section+1)
else
pj = get_knot_point(i+1)
// point in next cross section
p3 = get_knot_point(i+ticks_cross_section)
pi = rotX(xrot,pi)
pj = rotX(xrot,pj)
p3 = rotX(xrot,p3)
pi = project(pi)
pj = project(pj)
p3 = project(p3)
turtle.penup()
turtle.goto(p3[0], p3[1])
turtle.pendown()
turtle.goto(pi[0], pi[1])
turtle.goto(pj[0], pj[1])
turtle.goto(p3[0], p3[1])
// compute vector perpendicular to their plane and test if z coord is positive (facing us)
// or negative (facing away)
if(vec3_cross(vec3_sub(pj,pi), vec3_sub(p3,pi) )[2] > 0.0)
{
for(k in [1,2,3]) {
turtle.penup()
turtle.goto(p3[0], p3[1])
turtle.pendown()
turtle.goto(pi[0], pi[1])
turtle.goto(pj[0], pj[1])
turtle.goto(p3[0], p3[1])
}
}
return i<npoints
}
function project(p)
{
x = p[0]
y = p[1]
z = p[2]
z = z + 180
return [ (x/z)*screen_width, (y/z)*screen_height ];
}
function mcos(x) {
return Math.cos(x);
}
function msin(x) {
return Math.sin(x);
}
function vec3_add(a,b) {
return [a[0]+b[0],a[1]+b[1],a[2]+b[2]];
}
function vec3_sub(a,b) {
return [a[0]-b[0],a[1]-b[1],a[2]-b[2]];
}
function vec3_cross(a,b) {
return [
a[1]*b[2]-b[1]*a[2],
a[2]*b[0]-b[2]*a[0],
a[0]*b[1]-b[0]*a[1]
];
}
function rotX(ph,v) {
return [ v[0],v[1]*mcos(ph)+v[2]*msin(ph), v[2]*mcos(ph)-v[1]*msin(ph) ];
}