original curve with nz=0
paulbourke.net/geometry/butterfly/
Log in to post a comment.
// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(1);
// Global code will be evaluated once.
const turtle = new Turtle();
turtle.penup();
turtle.goto(0,0);
turtle.pendown();
const nx=1; // min=-2, max=2, step=.1
const ny=1; // min=-2, max=2, step=.1
const nz=0; // min=-2, max=2, step=.1
const rotatex=107; // min=0, max=360, step=1
const rotatey=148; // min=0, max=360, step=1
const rotatez=50; // min=0, max=360, step=1
const scale=17; // min=0, max=100, step=1
x=.0
y=.0
z=.0
u=.0
v=.0
// The walk function will be called until it returns false.
function walk()
{
for(u=0;u<=24*3.14;u=u+0.04)
{
x=nx*Math.cos(u)*(Math.pow(2.71828,Math.cos(u))-2*Math.cos(4*u)-Math.pow(Math.sin(u/12),5))*scale
y=ny*Math.sin(u)*(Math.pow(2.71828,Math.cos(u))-2*Math.cos(4*u)-Math.pow(Math.sin(u/12),5))*scale
z=nz*Math.sin(u)*scale
// Rotation in x
xn=x
yn=y*Math.cos(rotatex/360*2*3.1415)-z*Math.sin(rotatex/360*2*3.1415)
zn=y*Math.sin(rotatex/360*2*3.1415)+z*Math.cos(rotatex/360*2*3.1415)
x=xn
y=yn
z=zn
// Rotation in y
xn=x*Math.cos(rotatey/360*2*3.1415)+z*Math.sin(rotatey/360*2*3.1415)
yn=y
zn=-x*Math.sin(rotatey/360*2*3.1415)+z*Math.cos(rotatey/360*2*3.1415)
x=xn
y=yn
z=zn
// Rotation in y
xn=x*Math.cos(rotatez/360*2*3.1415)-y*Math.sin(rotatez/360*2*3.1415)
yn=x*Math.sin(rotatez/360*2*3.1415)+y*Math.cos(rotatez/360*2*3.1415)
zn=z
// convert to isometric view, orthographic
// x' = (x - z) * cos(θ)
// y' = y + (x + z) * sin(θ)
// θ = 30° for isometric
xiso=((xn-zn)*Math.cos(3.1415/6))
yiso=(yn+(xn+zn)*Math.sin(3.1415/6))
turtle.goto(xiso,yiso);
}
return false
}