Perlixagons 🌫️

A Perlin noise generator sets a greyscale value for every hexagon in the grid.

Log in to post a comment.

const edgeSize = 4; //min=1 max=80 step=1
const rings = 45; //min=0 max=100 step=1
const hatchScalar = 1; //min=1 max=7 step=.1
const perlinZoom10 = .2; //min=.01 max=1 step=.01
const paletteSize = 20; //min=2 max=40 step=1
const border = 5; //min=0 max=50 step=1

const perlinZoom = perlinZoom10 / 10;

// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(1/paletteSize);

// Global code will be evaluated once.
const bales = Bales(paletteSize, true);

// Global code will be evaluated once.
const turtle = new Turtle();
const text = new Text();
const polygons = new Polygons();
const perl = new Perlin(perlinZoom);
turtle.radians();


// 
// Vector math
//

function rot2(a) { return [Math.cos(a), -Math.sin(a), Math.sin(a), Math.cos(a)]; }
function trans2(m, a) { return [m[0]*a[0]+m[2]*a[1], m[1]*a[0]+m[3]*a[1]]; }
function scale2(a,b) { return [a[0]*b,a[1]*b]; }
function sub2(a,b) { return [a[0]-b[0], a[1]-b[1]]; }
function add2(a,b) { return [a[0]+b[0],a[1]+b[1]]; }
function add3(a,b) { return [a[0]+b[0],a[1]+b[1],a[2]+b[2]]; }
function multi2(a, b) { return [a[0]*b[0], a[1]*b[1]]; }


if(border > 0) {
    const brd = 100 - border;
    ([
        [[-120, -brd], [120, -brd], [120, -120], [-120, -120]],
        [[brd, -120], [brd, 120], [120, 120], [120, -120]],
        [[-120, brd], [120, brd], [120, 120], [-120, 120]],
        [[-brd, -120], [-brd, 120], [-120, 120], [-120, -120]]
    ]).forEach((b => {
        const p = polygons.create();
        p.addPoints(...b);
        polygons.draw(bales[0], p);
    }));
    
    [[-1,-1],[1,-1],[1,1],[-1,1],[-1,-1]].forEach((i, k) => k == 0? bales[0].jump(scale2(i, brd)): bales[0].goto(scale2(i, brd)))
}

class HexGrid {
    innerRVectors = []; // list of downright, upright, up, upleft, downleft, down vectors
    offsetModifiers = [
        [ 1, (column) => column % 2 == 0? 0: 1 ], // downright
        [ 1, (column) => column % 2 == 0? -1: 0 ], //upright
        [ 0, (column) => -1 ], //up 
        [-1, (column) => column % 2 == 0? -1: 0 ], //upleft
        [-1, (column) => column % 2 == 0? 0: 1 ], //downleft
        [ 0, (column) => 1 ] //down
    ];

    cubeModifiers = [[1,0,-1],[1,-1, 0],[0,-1,1],[-1,0,1],[-1,1,0],[0,1,-1]];
    
    reset() {
        this.iterator = null;
        this.currentOffset = [0,0];
        this.currentIndex = 0;
        this.currentCube = [0,0,0];
        this.currentDouble = [0,0];
        this.currentRing = 0;
    }
    
    constructor(edgeSize, spiral = false, rotation = 0, clockwise = false) {
        this.edgeSize = edgeSize;
        this.innerSize = Math.sqrt(.75) * edgeSize;
        this.spiral = spiral;
        this.rotation = rotation;
        this.clockwise = clockwise
        this.reset();
    }
    setInnerRVectors() {
        for(let i = 1; i <= 6; i++) {
            this.innerRVectors.push(trans2(rot2(((Math.PI / 3) * i * (this.clockwise? -1: 1)) - this.rotation), [0, this.innerSize * 2]));
        }
    }
    updateCoordination(index) {
        this.currentOffset = add2(this.currentOffset, [this.offsetModifiers[index][0], this.offsetModifiers[index][1](this.currentOffset[0])]);
        this.currentDouble = [this.currentOffset[0], this.currentOffset[1] + this.currentOffset[1] + (this.currentOffset[0] % 2 == 0? 0:1)];
        this.currentCube = add3(this.currentCube, this.cubeModifiers[index]);
        this.currentIndex++;
    }
    *spiralCellPositions() {
        let position = turtle.pos();

        yield this.yieldCell(position);
        while(this.currentRing++ !== false) {
            position = add2(position, this.innerRVectors[5]);
            this.updateCoordination(5);
            yield this.yieldCell(position);
            
            for(let j = 0; j < 6; j++) {
                for(let i = 0; i < this.currentRing - (j == 0? 1: 0); i++) {
                    position = add2(position, this.innerRVectors[j]);

                    this.updateCoordination(j);

                    yield this.yieldCell(position);
                }
            }
        }
    }
    *ringCellPositions() {
        let position = turtle.pos();
        
        yield this.yieldCell(position);
        while(this.currentRing++ !== false) {
            let rPosition = add2(position, scale2(this.innerRVectors[5], this.currentRing));

            this.currentOffset = [0, this.currentRing];
            this.currentDouble = [this.currentOffset[0], this.currentOffset[1] + this.currentOffset[1] + (this.currentOffset[0] % 2 == 0? 0:1)];
            this.currentCube = [0, this.currentRing, -this.currentRing];
            this.currentIndex++;

            yield this.yieldCell(rPosition);
            for(let i = 1; i <= 6; i++) {
                for(let n = 0; n < (i == 6? this.currentRing - 1: this.currentRing); n++) {
                    rPosition = add2(rPosition, this.innerRVectors[i % 6]);
                    this.updateCoordination(i % 6);
                    yield this.yieldCell(rPosition);
                }
            }
        }
    }
    yieldCell(position) {
        return new HexCell(this.edgeSize, position, this.currentIndex, this.currentOffset, this.currentCube, this.currentDouble, this.currentRing, this.rotation);
    }
    nextCell() {
        if(this.iterator == null) {
            this.setInnerRVectors();
            this.iterator = this.spiral? this.spiralCellPositions(): this.ringCellPositions();
            this.index = 0;
        }
        return this.iterator.next().value;
    }
}

class HexCell {
    constructor(size, position, index, offset, cube, double, ring, rotation) {
        this.position = position;
        this.index = index;
        this.offset = offset;
        this.cube = cube;
        this.double = double;
        this.ring = ring;
        this.size = size;
        this.rotation = rotation;
    }
    getBorderPoints(borderSize = null, relativeTo = null) {
        if(borderSize == null) {
            borderSize = this.size;
        }

        let points = [];
        for(let i = 0; i < 6; i++) {
            points.push(add2(relativeTo == null? this.position: relativeTo, [Math.cos(i/3 * Math.PI + this.rotation) * borderSize, Math.sin(i/3 * Math.PI + this.rotation) * borderSize]));
        }

        return points;
    }
    drawBorder(turtle, borderSize = null) {
        let points = this.getBorderPoints(borderSize);
        turtle.jump(points[0]);
        for(let i = 1; i < points.length; i++) {
            turtle.goto(points[i]);
        }
        turtle.goto(points[0]);
        turtle.jump(this.position);
    }
}

let hg = new HexGrid(edgeSize, false, Math.random()*Math.PI/3)//, false, Math.PI / 6 + Math.PI);
let firstPass = true;

let minPerlin = 0;
let maxPerlin = 0;
let perlinReach = 0;
const maxI = (nthTriangular(rings) * 6);
// The walk function will be called until it returns false.
function walk(i) {
    let cell = hg.nextCell();

    if(firstPass) {
        minPerlin = Math.min(perl.get(...cell.position.map(i => (i + 100))), minPerlin);
        maxPerlin = Math.max(perl.get(...cell.position.map(i => (i + 100))), maxPerlin);
        firstPass = i < maxI - 1;
        if(!firstPass) {
            hg.reset();
            perlinReach = maxPerlin - minPerlin;
        }
        return true;
    }
    i -= maxI;

    if(!(cell.position[0] + cell.size < -100 || 100 < cell.position[0] - cell.size || cell.position[1] + cell.size < -100 || 100 < cell.position[1] - cell.size)) {
        let pts = cell.getBorderPoints(null, [0,0]);
        let colors = [[Math.PI/3, 900*hatchScalar], [Math.PI/3, .51*hatchScalar], [Math.PI *2/ 3, .3*hatchScalar]];//, [Math.PI/3, .6]];
    
        let per = ((perl.get(...cell.position.map(i => (i + 100))) - minPerlin) / perlinReach);
        let perHatch = .15 + .4 * per;

        const p = polygons.create();
    
        p.addPoints(...pts.map(i => add2(i, cell.position)));
    
        if(paletteSize == 1) {
            p.addHatching(1, perHatch * hatchScalar);
            polygons.draw(turtle, p);
        } else {
            p.addHatching(1, .15);
            polygons.draw(bales[Math.round((bales.length - 1) * per)], p);
        }
    }
    
    return i < maxI;
}

function nthTriangular(n) { return ((n * n) + n) / 2; }

////////////////////////////////////////////////////////////////
// Text utility code. Created by Reinder Nijhoff 2019
// https://turtletoy.net/turtle/1713ddbe99
// Jurgen 2021: Fixed Text.print() to restore turtle._fullCircle
//.             if was in e.g. degrees mode (or any other)
////////////////////////////////////////////////////////////////
function Text() {class Text {print (t, str, scale = 1, italic = 0, kerning = 1) {let fc = t._fullCircle;t.radians();let pos = [t.x(), t.y()], h = t.h(), o = pos;str.split('').map(c => {const i = c.charCodeAt(0) - 32;if (i < 0 ) {pos = o = this.rotAdd([0, 48*scale], o, h);} else if (i > 96 ) {pos = this.rotAdd([16*scale, 0], o, h);} else {const d = dat[i], lt = d[0]*scale, rt = d[1]*scale, paths = d[2];paths.map( p => {t.up();p.map( s=> {t.goto(this.rotAdd([(s[0]-s[1]*italic)*scale - lt, s[1]*scale], pos, h));t.down();});});pos = this.rotAdd([(rt - lt)*kerning, 0], pos, h);}});t._fullCircle = fc;}rotAdd (a, b, h) {return [Math.cos(h)*a[0] - Math.sin(h)*a[1] + b[0], Math.cos(h)*a[1] + Math.sin(h)*a[0] + b[1]];}}const dat = ('br>eoj^jl<jqirjskrjq>brf^fe<n^ne>`ukZdz<qZjz<dgrg<cmqm>`thZhw<lZlw<qao_l^h^e_caccdeefggmiojpkqmqporlshsercp>^vs^as<f^h`hbgdeeceacaab_d^f^h_k`n`q_s^<olmmlolqnspsrrspsnqlol>]wtgtfsereqfphnmlpjrhsdsbraq`o`makbjifjekckaj_h^f_eaecffhimporqssstrtq>eoj`i_j^k_kajcid>cqnZl\\j_hcghglhqjulxnz>cqfZh\\j_lcmhmllqjuhxfz>brjdjp<egom<ogem>]wjajs<ajsj>fnkojpiojnkokqis>]wajsj>fnjniojpkojn>_usZaz>`ti^f_dbcgcjdofrisksnrpoqjqgpbn_k^i^>`tfbhak^ks>`tdcdbe`f_h^l^n_o`pbpdofmicsqs>`te^p^jfmfogphqkqmppnrkshserdqco>`tm^clrl<m^ms>`to^e^dgefhekenfphqkqmppnrkshserdqco>`tpao_l^j^g_ebdgdlepgrjsksnrppqmqlpingkfjfggeidl>`tq^gs<c^q^>`th^e_dadceegfkgnhpjqlqopqorlshserdqcocldjfhigmfoepcpao_l^h^>`tpeohmjjkikfjdhcecddaf_i^j^m_oapepjoomrjshserdp>fnjgihjikhjg<jniojpkojn>fnjgihjikhjg<kojpiojnkokqis>^vrabjrs>]wagsg<amsm>^vbarjbs>asdcdbe`f_h^l^n_o`pbpdofngjijl<jqirjskrjq>]xofndlcicgdfeehekfmhnknmmnk<icgefhfkgmhn<ocnknmpnrntluiugtdsbq`o_l^i^f_d`bbad`g`jambodqfrislsorqqrp<pcokompn>asj^bs<j^rs<elol>_tc^cs<c^l^o_p`qbqdpfoglh<chlhoipjqlqopqorlscs>`urcqao_m^i^g_eadccfckdnepgrismsorqprn>_tc^cs<c^j^m_oapcqfqkpnopmrjscs>`sd^ds<d^q^<dhlh<dsqs>`rd^ds<d^q^<dhlh>`urcqao_m^i^g_eadccfckdnepgrismsorqprnrk<mkrk>_uc^cs<q^qs<chqh>fnj^js>brn^nnmqlrjshsfreqdndl>_tc^cs<q^cl<hgqs>`qd^ds<dsps>^vb^bs<b^js<r^js<r^rs>_uc^cs<c^qs<q^qs>_uh^f_daccbfbkcndpfrhslsnrppqnrkrfqcpan_l^h^>_tc^cs<c^l^o_p`qbqepgohlici>_uh^f_daccbfbkcndpfrhslsnrppqnrkrfqcpan_l^h^<koqu>_tc^cs<c^l^o_p`qbqdpfoglhch<jhqs>`tqao_l^h^e_caccdeefggmiojpkqmqporlshsercp>brj^js<c^q^>_uc^cmdpfrisksnrppqmq^>asb^js<r^js>^v`^es<j^es<j^os<t^os>`tc^qs<q^cs>asb^jhjs<r^jh>`tq^cs<c^q^<csqs>cqgZgz<hZhz<gZnZ<gznz>cqc^qv>cqlZlz<mZmz<fZmZ<fzmz>brj\\bj<j\\rj>asazsz>fnkcieigjhkgjfig>atpeps<phnfleiegfehdkdmepgrislsnrpp>`sd^ds<dhffhekemfohpkpmopmrkshsfrdp>asphnfleiegfehdkdmepgrislsnrpp>atp^ps<phnfleiegfehdkdmepgrislsnrpp>asdkpkpiognfleiegfehdkdmepgrislsnrpp>eqo^m^k_jbjs<gene>atpepuoxnylzizgy<phnfleiegfehdkdmepgrislsnrpp>ate^es<eihfjemeofpips>fni^j_k^j]i^<jejs>eoj^k_l^k]j^<kekvjyhzfz>are^es<oeeo<ikps>fnj^js>[y_e_s<_ibfdegeifjijs<jimfoeretfuius>ateees<eihfjemeofpips>atiegfehdkdmepgrislsnrppqmqkphnfleie>`sdedz<dhffhekemfohpkpmopmrkshsfrdp>atpepz<phnfleiegfehdkdmepgrislsnrpp>cpgegs<gkhhjfleoe>bsphofleieffehfjhkmlompopporlsisfrep>eqj^jokrmsos<gene>ateeeofrhsksmrpo<peps>brdejs<pejs>_ubefs<jefs<jens<rens>bseeps<pees>brdejs<pejshwfydzcz>bspees<eepe<esps>cqlZj[i\\h^h`ibjckekgii<j[i]i_jakbldlfkhgjkllnlpkrjsiuiwjy<ikkmkojqirhthvixjylz>fnjZjz>cqhZj[k\\l^l`kbjcieigki<j[k]k_jaibhdhfihmjilhnhpirjskukwjy<kkimiojqkrltlvkxjyhz>^vamakbhdgfghhlknlplrksi<akbidhfhhillnmpmrlsisg>brb^bscsc^d^dsese^f^fsgsg^h^hsisi^j^jsksk^l^lsmsm^n^nsoso^p^psqsq^r^rs').split('>').map(r=> { return [r.charCodeAt(0)-106,r.charCodeAt(1)-106, r.substr(2).split('<').map(a => {const ret = []; for (let i=0; i<a.length; i+=2) {ret.push(a.substr(i, 2).split('').map(b => b.charCodeAt(0)-106));} return ret; })]; });return new Text();}

////////////////////////////////////////////////////////////////
// Polygon Clipping utility code - Created by Reinder Nijhoff 2019
// (Polygon binning by Lionel Lemarie 2021)
// https://turtletoy.net/turtle/a5befa1f8d
////////////////////////////////////////////////////////////////
function Polygons(){const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{constructor(){this.cp=[],this.dp=[],this.aabb=[]}addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]}addSegments(...t){t.forEach(t=>this.dp.push(t))}addOutline(){for(let t=0,s=this.cp.length;t<s;t++)this.dp.push(this.cp[t],this.cp[(t+1)%s])}draw(t){for(let s=0,e=this.dp.length;s<e;s+=2)t.jump(this.dp[s]),t.goto(this.dp[s+1])}addHatching(t,s){const e=new n;e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t);for(let t=.5;t<150/s;t++)e.dp.push([h*t+i,o*t-a],[h*t-i,o*t+a]),e.dp.push([-h*t+i,-o*t-a],[-h*t-i,-o*t+a]);e.boolean(this,!1),this.dp=[...this.dp,...e.dp]}inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s}boolean(t,s=!0){const e=[];for(let n=0,h=this.dp.length;n<h;n+=2){const h=this.dp[n],o=this.dp[n+1],a=[];for(let s=0,e=t.cp.length;s<e;s++){const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]);!1!==n&&a.push(n)}if(0===a.length)s===!t.inside(h)&&e.push(h,o);else{a.push(h,o);const n=o[0]-h[0],i=o[1]-h[1];a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i);for(let n=0;n<a.length-1;n++)(a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001&&s===!t.inside([(a[n][0]+a[n+1][0])/2,(a[n][1]+a[n+1][1])/2])&&e.push(a[n],a[n+1])}}return(this.dp=e).length>0}segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]}};return{list:()=>t,create:()=>new n,draw:(n,h,o=!0)=>{reducedPolygonList=function(n){const h={},o=200/s;for(var a=0;a<s;a++){const c=a*o-100,r=[0,c,200,c+o];if(!(n[3]<r[1]||n[1]>r[3]))for(var i=0;i<s;i++){const c=i*o-100;r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{const e=t[s];n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||(h[s]=1)})}}return Array.from(Object.keys(h),s=>t[s])}(h.aabb);for(let t=0;t<reducedPolygonList.length&&h.boolean(reducedPolygonList[t]);t++);h.draw(n),o&&function(n){t.push(n);const h=t.length-1,o=200/s;e.forEach((t,e)=>{const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o];c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h)})}(h)}}}

// Adapted from https://github.com/joeiddon/perlin
function Perlin(scale) {
    class Perlin {
        constructor(s) {
            this.gradients = {};
            this.memory = {};
            this.scale = s;
        }
        rand_vect() {
            let theta = Math.random() * 2 * Math.PI;
            return [Math.cos(theta), Math.sin(theta)];
        }
        dot_prod_grid(x, y, vx, vy) {
            let g_vect;
            let d_vect = [x - vx, y - vy];
            if (this.gradients[[vx,vy]]){
                g_vect = this.gradients[[vx,vy]];
            } else {
                g_vect = this.rand_vect();
                this.gradients[[vx, vy]] = g_vect;
            }
            return d_vect[0] * g_vect[0] + d_vect[1] * g_vect[1];
        }
        smootherstep(x) {
            return 6*x**5 - 15*x**4 + 10*x**3;
        }
        interp(x, a, b){
            return a + this.smootherstep(x) * (b-a);
        }
        get(x, y) {
            x *= this.scale;
            y *= this.scale;
            if (this.memory.hasOwnProperty([x,y]))
                return this.memory[[x,y]];
            let xf = Math.floor(x);
            let yf = Math.floor(y);
            //interpolate
            let tl = this.dot_prod_grid(x, y, xf,   yf);
            let tr = this.dot_prod_grid(x, y, xf+1, yf);
            let bl = this.dot_prod_grid(x, y, xf,   yf+1);
            let br = this.dot_prod_grid(x, y, xf+1, yf+1);
            let xt = this.interp(x-xf, tl, tr);
            let xb = this.interp(x-xf, bl, br);
            let v = this.interp(y-yf, xt, xb);
            this.memory[[x,y]] = v;
            return v;
        }
    }
    return new Perlin(scale);
}


////////////////////////////////////////////////////////////////
// Bale utility code - Created by Jurgen Westerhof 2022
// https://turtletoy.net/turtle/7269af8a23
// Abusing the opacity, usage:
//      Canvas.setpenopacity(1/baleSize);
//      const bales = Array.apply(null,{length: baleSize}).map(b => new Bale(baleSize--);
// Then use bales[x] wherever you would use a turtle object to 'draw'
// in 'color' x (i.e Polygon hatching with a bale object and .15 interspacing)
////////////////////////////////////////////////////////////////
function Bale(n) {
    class Bale {
        constructor(n) { this.turtles = Array.apply(null,{length: n}).map(i => new Turtle()); }
        
        back(e)         { this.turtles.map(t => t.back(e)); return this; }
        backward(e)     { this.turtles.map(t => t.backward(e)); return this; }
        bk(e)           { this.turtles.map(t => t.bk(e)); return this; }
        fd(e)           { this.turtles.map(t => t.fd(e)); return this; }
        forward(e)      { this.turtles.map(t => t.forward(e)); return this; }

        left(e)         { this.turtles.map(t => t.left(e)); return this; }
        lt(e)           { this.turtles.map(t => t.lt(e)); return this; }
        right(e)        { this.turtles.map(t => t.right(e)); return this; }
        rt(e)           { this.turtles.map(t => t.rt(e)); return this; }

        seth(e)         { this.turtles.map(t => t.seth(e)); return this; }
        setheading(e)   { this.turtles.map(t => t.setheading(e)); return this; }

        setx(e)         { this.turtles.map(t => t.setx(e)); return this; }
        sety(e)         { this.turtles.map(t => t.sety(e)); return this; }

        setpos(x, y)        { this.turtles.map(t => t.setpos(x, y)); return this; }
        setposition(x, y)   { this.turtles.map(t => t.setposition(x, y)); return this; }

        toradians(e)    { this.turtles.map(t => t.toradians(e)); return this; }
        degrees(e)      { this.turtles.map(t => t.degrees(e)); return this; }

        goto(x, y)      { this.turtles.map(t => t.goto(x, y)); return this; }
        jmp(x, y)       { this.turtles.map(t => t.jmp(x, y)); return this; }
        jump(x, y)      { this.turtles.map(t => t.jump(x, y)); return this; }

        circle(radius, extent, steps) { this.turtles.map(t => t.circle(radius, extent, steps)); return this; }

        clone()         { let b = new Bale(this.turtle.length); this.turtles.map((t, k) => b.turtles[k] = t.clone()); return b; }

        h()             { return this.turtles[0].h(); }
        heading()       { return this.turtles[0].heading(); }
        
        home()          { this.turtles.map(t => t.home()); return this; }
        
        isdown()        { return this.turtles[0].isdown(); }

        pos()           { return this.turtles[0].pos(); }
        position()      { return this.turtles[0].position(); }

        pd()            { this.turtles.map(t => t.pd()); return this; }
        pendown()       { this.turtles.map(t => t.pendown()); return this; }
        penup()         { this.turtles.map(t => t.penup()); return this; }
        pu()            { this.turtles.map(t => t.pu()); return this; }
        down()          { this.turtles.map(t => t.down()); return this; }
        up()            { this.turtles.map(t => t.up()); return this; }

        radians()       { this.turtles.map(t => t.radians()); return this; }

        x()             { return this.turtles[0].x(); }
        xcor()          { return this.turtles[0].xcor(); }
        y()             { return this.turtles[0].y(); }
        ycor()          { return this.turtles[0].ycor(); }
    }
    return new Bale(n);
}
function Bales(count, includeWhite = false) {
    if(count == 1) return [new Bale(1)];
    const getExponent = (base, target) => Math.log(target) / Math.log(base);
    const baleSize = count - (includeWhite?1:0);
    const n = Array.apply(null,{length: baleSize}).map((v,k) => Math.round(getExponent(1 - 1/count, 1 - (count - k == count?.99:(baleSize - k)/baleSize))));
    if(includeWhite) n.push(0);
    return n.map(i => new Bale(i));
}