I'm revisiting a turtle by @reinder
Polygon hatching
I modified the code to work with my delegated hatching and deferred drawing extensions.
#polygons #Escher
Log in to post a comment.
// Forked from "Delegated deferred polygons 🔺" by Jurgen // https://turtletoy.net/turtle/d1095a7e5d // Forked from "Polygon hatching" by reinder // https://turtletoy.net/turtle/92ebe08d89 // Polygon delegated hatching and deferred drawing. Created by Jurgen Westerhof 2024 // // https://turtletoy.net/turtle/d1095a7e5d // // Original: // // Polygon hatching. Created by Reinder Nijhoff 2018 // @reindernijhoff // // https://turtletoy.net/turtle/92ebe08d89 // // You can find the Turtle API reference here: https://turtletoy.net/syntax const gridSize = 21; //min=1 max=50 step=1 const projectionMargin = 0; //min=0 max=10 step=.1 const segmentCapture = .16; // min=.01 max=1 step=.01 const captureWidth = 200; //min=10 max=200 step=1 // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(.6); const GRID = { TOP: 1, RIGHT: 2, BOTTOM: 4, LEFT: 8 }; // Global code will be evaluated once. turtlelib_init(); const turtle = new ObservableTurtle(); const sls = FlyEyeFactory( turtle, gridSize,// gridSize, [projectionMargin-100, projectionMargin-100], //gridTopLeft, [100-projectionMargin, 100-projectionMargin], //gridBottomRight, projectionMargin, //gridMargin, [-captureWidth/2, -captureWidth/2], //sampleTopLeft, [captureWidth/2, captureWidth/2], //sampleBottomRight, segmentCapture//sampleTileSizeFraction ); // Global code will be evaluated once. loadHatcheryNamespace(); //const turtle = new Turtle(); const polygons = new Polygons(); polygons.startDeferSession(); const hatchings = Array.from({length: 3}).map((e,i) => new LineHatching((i-1/3)*Math.PI/2, .3+i*.5, .3)); function walk(i) { const s = 25; const sp = 12.5; // first an invisible cube is added to the clip list. //if (i ==0) drawCube((3-8/2)*(s+sp),2*s-(s+sp)*(-8+9)/Math.sqrt(1.25),s,0,false); if (i < 4) drawCube((i-1.5)*(s+sp),2*s,s); else if (i < 7) drawCube((3-i/2)*(s+sp),2*s-(s+sp)*(i-3)/Math.sqrt(1.25),s); else if (i < 9) drawCube((3-i/2)*(s+sp),2*s-(s+sp)*(-i+9)/Math.sqrt(1.25),s);//,9); if(i == 2) { polygons.stopDeferring(); } else if(i == 9) { polygons.finalizeDeferSession(turtle); } return i < 9; } function drawCube(x,y,r) { //,skip=0,draw=true) { const p = [[x,y]]; for (let i=0; i<6; i++) { p.push([Math.cos(i*Math.PI/3)*r+x, Math.sin(i*Math.PI/3)*r+y]); } // create 3 visible polygons for cube const ps = []; for (let i=0; i<3; i++) { const c = polygons.create(); c.addPoints(p[0],p[i*2+1],p[i*2+2],p[(i*2+3)%6]); c.addOutline(); c.addHatching(hatchings[i]); polygons.draw(turtle, c); } } /////////////////////////////////////////////////////////////////// // This is only the part of the Polygon Hatching utility code // required in this turtle. For the full hatchery code see // https://turtletoy.net/turtle/d068ad6040 // /////////////////////////////////////////////////////////////////// // Polygon Hatching utility code - Created by Jurgen Westerhof 2024 // https://turtletoy.net/turtle/d068ad6040 // //////////////////////////////////////////////////////////////// // // To be used with modified Polygon Clipping utility code // // Orginal: https://turtletoy.net/turtle/a5befa1f8d // // Polygon binning: https://turtletoy.net/turtle/95f33bd383 // // Delegated Hatching: https://turtletoy.net/turtle/d068ad6040 /////////////////////////////////////////////////////////////////// function loadHatcheryNamespace() { //for convenience on Turtletoy you can click the arrow to the right of the line number to collapse a class //////////////////////////////////////////////////// root class PolygonHatching { constructor() { if (this.constructor === PolygonHatching) { throw new Error("PolygonHatching is an abstract class and can't be instantiated."); } this.minX = -100; this.minY = -100; this.maxX = 100; this.maxY = 100; this.width = 200; this.height = 200; this.segments = []; this.init(); } hatch(polygonsClass, thePolygonToHatch) { const e = new polygonsClass; e.cp.push(...thePolygonToHatch.aabb);//[-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); this.addHatchSegments(e.dp); e.boolean(thePolygonToHatch,!1); thePolygonToHatch.dp=[...thePolygonToHatch.dp,...e.dp] } addHatchSegments(segments) { this.getSegments().forEach(e => segments.push(e)); } getSegments() { return this.segments; } init() { /////////////////////////////////////////////////////// // Vector functions - Created by Jurgen Westerhof 2024 // https://turtletoy.net/turtle/d068ad6040 /////////////////////////////////////////////////////// class Vector { static add (a,b) { return a.map((v,i)=>v+b[i]); } static sub (a,b) { return a.map((v,i)=>v-b[i]); } static mul (a,b) { return a.map((v,i)=>v*b[i]); } static div (a,b) { return a.map((v,i)=>v/b[i]); } static scale(a,s) { return a.map(v=>v*s); } static det(m) { return m.length == 1? m[0][0]: m.length == 2 ? m[0][0]*m[1][1]-m[0][1]*m[1][0]: m[0].reduce((r,e,i) => r+(-1)**(i+2)*e*this.det(m.slice(1).map(c => c.filter((_,j) => i != j))),0); } static angle(a) { return Math.PI - Math.atan2(a[1], -a[0]); } //compatible with turtletoy heading static rot2d(angle) { return [[Math.cos(angle), -Math.sin(angle)], [Math.sin(angle), Math.cos(angle)]]; } static rot3d(yaw,pitch,roll) { return [[Math.cos(yaw)*Math.cos(pitch), Math.cos(yaw)*Math.sin(pitch)*Math.sin(roll)-Math.sin(yaw)*Math.cos(roll), Math.cos(yaw)*Math.sin(pitch)*Math.cos(roll)+Math.sin(yaw)*Math.sin(roll)],[Math.sin(yaw)*Math.cos(pitch), Math.sin(yaw)*Math.sin(pitch)*Math.sin(roll)+Math.cos(yaw)*Math.cos(roll), Math.sin(yaw)*Math.sin(pitch)*Math.cos(roll)-Math.cos(yaw)*Math.sin(roll)],[-Math.sin(pitch), Math.cos(pitch)*Math.sin(roll), Math.cos(pitch)*Math.cos(roll)]]; } static trans(matrix,a) { return a.map((v,i) => a.reduce((acc, cur, ci) => acc + cur * matrix[ci][i], 0)); } //Mirror vector a in a ray through [0,0] with direction mirror static mirror2d(a,mirror) { return [Math.atan2(...mirror)].map(angle => this.trans(this.rot2d(angle), this.mul([-1,1], this.trans(this.rot2d(-angle), a)))).pop(); } static approx(a,b,p) { return this.len(this.sub(a,b)) < (p === undefined? .001: p); } static norm (a) { return this.scale(a,1/this.len(a)); } static len (a) { return Math.hypot(...a); } static lenSq (a) { return a.reduce((a,c)=>a+c**2,0); } static lerp (a,b,t) { return a.map((v, i) => v*(1-t) + b[i]*t); } static dist (a,b) { return Math.hypot(...this.sub(a,b)); } static dot (a,b) { return a.reduce((a,c,i) => a+c*b[i], 0); } static cross(...ab) { return ab[0].map((e, i) => ab.map(v => v.filter((ee, ii) => ii != i))).map((m,i) => (i%2==0?-1:1)*this.det(m)); } } this.V = Vector; class Intersection2D { //a-start, a-direction, b-start, b-direction //returns false on no intersection or [[intersection:x,y], scalar a-direction, scalar b-direction static info(as, ad, bs, bd) { const d = V.sub(bs, as), det = -V.det([bd, ad]); if(det === 0) return false; const res = [V.det([d, bd]) / det, V.det([d, ad]) / det]; return [V.add(as, V.scale(ad, res[0])), ...res]; } static ray(a, b, c, d) { return this.info(a, b, c, d); } static segment(a,b,c,d, inclusiveStart = true, inclusiveEnd = true) { const i = this.info(a, V.sub(b, a), c, V.sub(d, c)); return i === false? false: ( (inclusiveStart? 0<=i[1] && 0<=i[2]: 0<i[1] && 0<i[2]) && (inclusiveEnd? i[1]<=1 && i[2]<=1: i[1]<1 && i[2]<1) )?i[0]:false; } } this.Intersection = Intersection2D; } } this.PolygonHatching = PolygonHatching; class LineHatching extends PolygonHatching { constructor(angle, distance, inp = 0) { super(); const h=Math.sin(angle)*distance,o=Math.cos(angle)*distance,a=200*Math.sin(angle),i=200*Math.cos(angle); this.segments = Array.from({length: 150/distance}).flatMap((x,y,z,t=.5+y) => [ [h*t+i+inp*(Math.random()-.5),o*t-a+inp*(Math.random()-.5)],[h*t-i+inp*(Math.random()-.5),o*t+a+inp*(Math.random()-.5)], [-h*t+i+inp*(Math.random()-.5),-o*t-a+inp*(Math.random()-.5)],[-h*t-i+inp*(Math.random()-.5),-o*t+a+inp*(Math.random()-.5)] ]) } } this.LineHatching = LineHatching; } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // (Polygon binning by Lionel Lemarie 2021) https://turtletoy.net/turtle/95f33bd383 // (Delegated Hatching by Jurgen Westerhof 2024) https://turtletoy.net/turtle/d068ad6040 // (Deferred Polygon Drawing by Jurgen Westerhof 2024) https://turtletoy.net/turtle/6f3d2bc0b5 // https://turtletoy.net/turtle/a5befa1f8d // // const polygons = new Polygons(); // const p = polygons.create(); // polygons.draw(turtle, p); // polygons.list(); // polygons.startDeferSession(); // polygons.stopDeferring(); // polygons.finalizeDeferSession(turtle); // // p.addPoints(...[[x,y],]); // p.addSegments(...[[x,y],]); // p.addOutline(); // p.addHatching(angle, distance); OR p.addHatching(HatchObject); where HatchObject has a method 'hatch(PolygonClass, thisPolygonInstance)' // p.inside([x,y]); // p.boolean(polygon, diff = true); // p.segment_intersect([x,y], [x,y], [x,y], [x,y]); //////////////////////////////////////////////////////////////// function Polygons(){const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{constructor(){this.cp=[],this.dp=[],this.aabb=[]}addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]}addSegments(...t){t.forEach(t=>this.dp.push(t))}addOutline(){for(let t=0,s=this.cp.length;t<s;t++)this.dp.push(this.cp[t],this.cp[(t+1)%s])}draw(t){for(let s=0,e=this.dp.length;s<e;s+=2)t.jump(this.dp[s]),t.goto(this.dp[s+1])}addHatching(t, s) {if(typeof t == 'object') return t.hatch(n, this);const e=new n;e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t);for(let t=.5;t<150/s;t++) {e.dp.push([h*t+i,o*t-a],[h*t-i,o*t+a]);e.dp.push([-h*t+i,-o*t-a],[-h*t-i,-o*t+a]);}e.boolean(this,!1);this.dp=[...this.dp,...e.dp]}inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s}boolean(t,s=!0){const e=[];for(let n=0,h=this.dp.length;n<h;n+=2){const h=this.dp[n],o=this.dp[n+1],a=[];for(let s=0,e=t.cp.length;s<e;s++){const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]);!1!==n&&a.push(n)}if(0===a.length)s===!t.inside(h)&&e.push(h,o);else{a.push(h,o);const n=o[0]-h[0],i=o[1]-h[1];a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i);for(let n=0;n<a.length-1;n++)(a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001&&s===!t.inside([(a[n][0]+a[n+1][0])/2,(a[n][1]+a[n+1][1])/2])&&e.push(a[n],a[n+1])}}return(this.dp=e).length>0}segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]}};const y=function(n,j=[]){const h={},o=200/s;for(var a=0;a<s;a++){const c=a*o-100,r=[0,c,200,c+o];if(!(n[3]<r[1]||n[1]>r[3]))for(var i=0;i<s;i++){const c=i*o-100;r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{const e=t[s];n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||j.includes(s)||(h[s]=1)})}}return Array.from(Object.keys(h),s=>t[s])};return{list:()=>t,create:()=>new n,draw:(n,h,o=!0)=>{rpl=y(h.aabb, this.dei === undefined? []: Array.from({length: t.length - this.dei}).map((e, i) => this.dsi + i));for(let t=0;t<rpl.length&&h.boolean(rpl[t]);t++);const td=n.isdown();if(this.dsi!==undefined&&this.dei===undefined)n.pu();h.draw(n),o&&function(n){t.push(n);const h=t.length-1,o=200/s;e.forEach((t,e)=>{const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o];c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h)})}(h);if(td)n.pd();},startDeferSession:()=>{if(this.dei!==undefined)throw new Error('Finalize deferring before starting new session');this.dsi=t.length;},stopDeferring:()=>{if(this.dsi === undefined)throw new Error('Start deferring before stopping');this.dei=t.length;},finalizeDeferSession:(n)=>{if(this.dei===undefined)throw new Error('Stop deferring before finalizing');for(let i=this.dsi;i<this.dei;i++) {rpl = y(t[i].aabb,Array.from({length:this.dei-this.dsi+1}).map((e,j)=>i+j));for(let j=0;j<rpl.length&&t[i].boolean(rpl[j]);j++);t[i].draw(n);}this.dsi=undefined;this.dei=undefined;}}} function FlyEyeFactory(turtle, gridSize, gridTopLeft, gridBottomRight, gridMargin, sampleTopLeft, sampleBottomRight, sampleTileSizeFraction) { const sampleWidth = sampleBottomRight[0] - sampleTopLeft[0]; const sampleHeight = sampleBottomRight[1] - sampleTopLeft[1]; const tileWidth = sampleWidth * sampleTileSizeFraction; const tileHeight = sampleHeight * sampleTileSizeFraction; const sampleCenterTopLeft = V.add(sampleTopLeft, [tileWidth/2, tileHeight/2]); const columnIncrement = gridSize == 1? 0: (sampleWidth - tileWidth) / (gridSize - 1); const rowIncrement = gridSize == 1? 0: (sampleHeight - tileHeight) / (gridSize - 1); const gridWidth = gridBottomRight[0] - gridTopLeft[0]; const gridHeight = gridBottomRight[1] - gridTopLeft[1]; const gridTileWidth = (gridWidth - gridMargin * Math.max(1, gridSize - 1)) / gridSize; const gridTileHeight = (gridHeight - gridMargin * Math.max(1, gridSize - 1)) / gridSize; const flyEyeSegments = []; for(let c = 0; c < gridSize; c++) { for(let r = 0; r < gridSize; r++) { flyEyeSegments.push( new SquareLens( turtle, [ V.add(sampleTopLeft, [columnIncrement * c, rowIncrement * r]), V.add( V.add(sampleTopLeft, [columnIncrement * c, rowIncrement * r]), [tileWidth, tileHeight] ) ], [ V.add(gridTopLeft, [c * (gridTileWidth + gridMargin), r * (gridTileHeight + gridMargin)]), V.add( V.add(gridTopLeft, [c * (gridTileWidth + gridMargin), r * (gridTileHeight + gridMargin)]), [gridTileWidth, gridTileHeight] ) ], (c == 0? GRID.LEFT: 0) | (r == 0? GRID.TOP: 0) | (c == gridSize - 1? GRID.RIGHT: 0) | (r == gridSize - 1? GRID.BOTTOM: 0) ) ); } } return flyEyeSegments; } function ObservableTurtle(x, y) { class ObservableTurtle extends Turtle { constructor(x, y) { super(x, y); this.observers = []; } goto(x, y) { const isDown = this.isdown(); const from = this.pos(); this.up(); super.goto(x, y); if(isDown) { this.notifyObservers(from, this.pos()); this.down(); } } registerObserver(o) { return this.observers.push(o) - 1; } notifyObservers(...data) { this.observers.forEach(o => o.update(...data)) } } return new ObservableTurtle(x, y); } function SquareLens(turtleToObserve, lookAt, projectTo, edge = 0, projector = null) { class SquareLens { constructor(turtleToObserve, lookAt, projectTo, bottomOrRight, projector) { this.turtleToObserve = turtleToObserve; this.turtleToObserve.registerObserver(this); this.edge = edge; this.projector = projector == null? new Turtle(): projector; this.lookAt = lookAt; this.projectTo = projectTo; this.midLookAt = V.add(this.lookAt[0], V.scale(V.sub(...this.lookAt.map(l => l).reverse()), .5)); this.midProjectTo = V.add(this.projectTo[0], V.scale(V.sub(...this.projectTo.map(l => l).reverse()), .5)); this.lookAtBox = [[0, 0], [1, 0], [1, 1], [0, 1]].map(e => e.map((w, i) => this.lookAt[e[i]][i])); this.lookAtBoxEdges = this.lookAtBox.map((e, i, a) => [e, V.sub(a[(i+1)%a.length], e)]); this.ratios = lookAt[0].map((e, i, a) => (projectTo[1][i] - projectTo[0][i])/(lookAt[1][i] - lookAt[0][i])); } update(...data) { let from = data[0]; let to = data[1]; const intersections = this.lookAtBoxEdges.map(edge => Intersection.info(...edge, data[0], V.sub(to, from))).filter(int => int !== false && (0 <= int[1] && int[1] < 1 && 0 <= int[2] && int[2] <= 1)); const insiders = data.map(pt => Intersection.inside(this.lookAtBox, pt)); const collinear = (() => { //check if segment from-to overlaps with border (collinear) if(from[0] == to[0]) { //vertical line //make the line go bottom let fromY = Math.min(from[1], to[1]); let toY = Math.max(from[1], to[1]); if(fromY < this.lookAt[0][1] && toY < this.lookAt[0][1] || fromY > this.lookAt[1][1] && toY > this.lookAt[1][1]) { return false; } if(from[0] != this.lookAt[0][0] && from[0] != this.lookAt[1][0]) { return false; } if(from[0] == this.lookAt[1][0] &&//right lookat (this.edge & GRID.RIGHT) == 0) { //if it's not the right lens return false; //skip collinear } if(fromY <= this.lookAt[0][1]) { from = [from[0], this.lookAt[0][1]]; } if(lookAt[1][1] <= toY) { to = [from[0], this.lookAt[1][1]]; } return true; } else if (from[1] == to[1]) { //horizontal line //make the line go right let fromX = Math.min(from[0], to[0]); let toX = Math.max(from[0], to[0]); if(fromX < this.lookAt[0][0] && toX < this.lookAt[0][0] || fromX > this.lookAt[1][0] && toX > this.lookAt[1][0]) { return false; } if(from[1] != this.lookAt[0][1] && from[1] != this.lookAt[1][1]) { return false; } if(from[1] == this.lookAt[1][1] &&//bottom lookat (this.edge & GRID.BOTTOM) == 0) { //if it's not the bottom lens return false; //skip collinear } if(fromX <= this.lookAt[0][0]) { from = [this.lookAt[0][0], from[1]]; } if(lookAt[1][0] <= toX) { to = [this.lookAt[1][0], from[1]]; } return true; } return false; })(); if(!collinear && !insiders.every(i => i)) { //if not both inside if(intersections.length == 0) { //and not intersections return; //bail } intersections.sort((a, b) => a[2] < b[2]? -1: 1); if(insiders.every(i => !i)) { //both outside from = intersections[0][0]; to = intersections[intersections.length - 1][0]; } else { //one inside if(insiders[0]) { to = intersections[intersections.length - 1][0]; } else { from = intersections[0][0]; } } } this.projector.jump(V.add(V.mul(V.sub(from, this.midLookAt), this.ratios), this.midProjectTo)); this.projector.goto(V.add(V.mul(V.sub(to, this.midLookAt), this.ratios), this.midProjectTo)); } } return new SquareLens(turtleToObserve, lookAt, projectTo, edge, projector); } // Below is automatically maintained by Turtlelib 1.0 // Changes below this comment might interfere with its correct functioning. function turtlelib_init() { turtlelib_ns_c6665b0e9b_Jurgen_Vector_Math(); turtlelib_ns_c5f8fa95ed_Jurgen_Intersection(); } // Turtlelib Jurgen Vector Math v 4 - start - {"id":"c6665b0e9b","package":"Jurgen","name":"Vector Math","version":"4"} function turtlelib_ns_c6665b0e9b_Jurgen_Vector_Math() { ///////////////////////////////////////////////////////// // Vector functions - Created by Jurgen Westerhof 2024 // ///////////////////////////////////////////////////////// class Vector { static add (a,b) { return a.map((v,i)=>v+b[i]); } static sub (a,b) { return a.map((v,i)=>v-b[i]); } static mul (a,b) { return a.map((v,i)=>v*b[i]); } static div (a,b) { return a.map((v,i)=>v/b[i]); } static scale(a,s) { return a.map(v=>v*s); } static det(m) { return m.length == 1? m[0][0]: m.length == 2 ? m[0][0]*m[1][1]-m[0][1]*m[1][0]: m[0].reduce((r,e,i) => r+(-1)**(i+2)*e*this.det(m.slice(1).map(c => c.filter((_,j) => i != j))),0); } static angle(a) { return Math.PI - Math.atan2(a[1], -a[0]); } //compatible with turtletoy heading static rot2d(angle) { return [[Math.cos(angle), -Math.sin(angle)], [Math.sin(angle), Math.cos(angle)]]; } static rot3d(yaw,pitch,roll) { return [[Math.cos(yaw)*Math.cos(pitch), Math.cos(yaw)*Math.sin(pitch)*Math.sin(roll)-Math.sin(yaw)*Math.cos(roll), Math.cos(yaw)*Math.sin(pitch)*Math.cos(roll)+Math.sin(yaw)*Math.sin(roll)],[Math.sin(yaw)*Math.cos(pitch), Math.sin(yaw)*Math.sin(pitch)*Math.sin(roll)+Math.cos(yaw)*Math.cos(roll), Math.sin(yaw)*Math.sin(pitch)*Math.cos(roll)-Math.cos(yaw)*Math.sin(roll)],[-Math.sin(pitch), Math.cos(pitch)*Math.sin(roll), Math.cos(pitch)*Math.cos(roll)]]; } static trans(matrix,a) { return a.map((v,i) => a.reduce((acc, cur, ci) => acc + cur * matrix[ci][i], 0)); } //Mirror vector a in a ray through [0,0] with direction mirror static mirror2d(a,mirror) { return [Math.atan2(...mirror)].map(angle => this.trans(this.rot2d(angle), this.mul([-1,1], this.trans(this.rot2d(-angle), a)))).pop(); } static equals(a,b) { return !a.some((e, i) => e != b[i]); } static approx(a,b,p) { return this.len(this.sub(a,b)) < (p === undefined? .001: p); } static norm (a) { return this.scale(a,1/this.len(a)); } static len (a) { return Math.hypot(...a); } static lenSq (a) { return a.reduce((a,c)=>a+c**2,0); } static lerp (a,b,t) { return a.map((v, i) => v*(1-t) + b[i]*t); } static dist (a,b) { return Math.hypot(...this.sub(a,b)); } static dot (a,b) { return a.reduce((a,c,i) => a+c*b[i], 0); } static cross(...ab) { return ab[0].map((e, i) => ab.map(v => v.filter((ee, ii) => ii != i))).map((m,i) => (i%2==0?-1:1)*this.det(m)); } static clamp(a,min,max) { return a.map((e,i) => Math.min(Math.max(e, min[i]), max[i])) }; static rotateClamp(a,min,max) { return a.map((e,i) => {const d = max[i]-min[i];if(d == 0) return min[i];while(e < min[i]) { e+=d; }while(e > max[i]) { e-=d; }return e;}); } } this.V = Vector; } // Turtlelib Jurgen Vector Math v 4 - end // Turtlelib Jurgen Intersection v 4 - start - {"id":"c5f8fa95ed","package":"Jurgen","name":"Intersection","version":"4"} function turtlelib_ns_c5f8fa95ed_Jurgen_Intersection() { /////////////////////////////////////////////////////////////// // Intersection functions - Created by Jurgen Westerhof 2024 // /////////////////////////////////////////////////////////////// class Intersection { //a-start, a-direction, b-start, b-direction //returns false on no intersection or [[intersection:x,y], scalar a-direction, scalar b-direction static info(as, ad, bs, bd) { const d = V.sub(bs, as), det = -V.det([bd, ad]); if(det === 0) return false; const res = [V.det([d, bd]) / det, V.det([d, ad]) / det]; return [V.add(as, V.scale(ad, res[0])), ...res]; } static ray(a, b, c, d) { return this.info(a, b, c, d); } static segment(a,b,c,d, inclusiveStart = true, inclusiveEnd = true) { const i = this.info(a, V.sub(b, a), c, V.sub(d, c)); return i === false? false: ( (inclusiveStart? 0<=i[1] && 0<=i[2]: 0<i[1] && 0<i[2]) && (inclusiveEnd? i[1]<=1 && i[2]<=1: i[1]<1 && i[2]<1) )?i[0]:false;} static tour(tour, segmentStart, segmentDirection) { return tour.map((e, i, a) => [i, this.info(e, V.sub(a[(i+1)%a.length], e), segmentStart, segmentDirection)]).filter(e => e[1] !== false && 0 <= e[1][1] && e[1][1] <= 1).filter(e => 0 <= e[1][2]).map(e => ({position: e[1][0],tourIndex: e[0],tourSegmentPortion: e[1][1],segmentPortion: e[1][2],}));} static inside(tour, pt) { return tour.map((e,i,a) => this.segment(e, a[(i+1)%a.length], pt, [Number.MAX_SAFE_INTEGER, 0], true, false)).filter(e => e !== false).length % 2 == 1; } static circles(centerA, radiusA, centerB, radiusB) {const result = {intersect_count: 0,intersect_occurs: true,one_is_in_other: false,are_equal: false,point_1: [null, null],point_2: [null, null],};const dx = centerB[0] - centerA[0];const dy = centerB[1] - centerA[1];const dist = Math.hypot(dy, dx);if (dist > radiusA + radiusB) {result.intersect_occurs = false;}if (dist < Math.abs(radiusA - radiusB) && !N.approx(dist, Math.abs(radiusA - radiusB))) {result.intersect_occurs = false;result.one_is_in_other = true;}if (V.approx(centerA, centerB) && radiusA === radiusB) {result.are_equal = true;}if (result.intersect_occurs) {const centroid = (radiusA**2 - radiusB**2 + dist * dist) / (2.0 * dist);const x2 = centerA[0] + (dx * centroid) / dist;const y2 = centerA[1] + (dy * centroid) / dist;const prec = 10000;const h = (Math.round(radiusA**2 * prec)/prec - Math.round(centroid**2 * prec)/prec)**.5;const rx = -dy * (h / dist);const ry = dx * (h / dist);result.point_1 = [x2 + rx, y2 + ry];result.point_2 = [x2 - rx, y2 - ry];if (result.are_equal) {result.intersect_count = Infinity;} else if (V.equals(result.point_1, result.point_2)) {result.intersect_count = 1;} else {result.intersect_count = 2;}}return result;} } this.Intersection = Intersection; } // Turtlelib Jurgen Intersection v 4 - end