Cloth physics. Set the iterations to max and export to a 10-second GIF for the full animation.
Log in to post a comment.
// LL 2021 const density = 30; // min=2 max=50 step=1 const gravity = 0.01; /// min=0 max=1 step=0.001 const offset_y = 60; const scale = 14; /// min=1 max=50 step=1 const style = 1; // min=0 max=1 step=1 (Polygons (fast),Polygons (slow)) const string_link_count = 40; const thickness = 4; /// min=1 max=100 step=1 const iterations = 128; // min=0 max=500 step=1 Canvas.setpenopacity(1); const turtle = new Turtle(); var polygons = null; var particles = []; var things_to_draw = []; var iterations_t = iterations; var iteration=0; console.clear(); class Particle { constructor(x, y, px, py, lock_y, floor=0) { this.x = x; this.y = y; this.px = px; this.py = py; this.lock_y = lock_y; this.floor = floor; } update() { var dx = this.x - this.px, dy = this.y - this.py; this.px = this.x; this.py = this.y; // Verlet const friction = 0.99; dx *= friction; dy *= friction; dy += gravity; this.x += dx; if (!this.lock_y) this.y += dy; if (this.y > this.floor - this.radius) { this.y = this.floor - this.radius; this.px = this.x - (this.x - this.px) * 0.5; } } } function drawPoints(points, shaded=false) { if (style == 0) { turtle.jump(points[points.length-1]); points.forEach(p=>turtle.goto(p)); } else { const p1 = polygons.create(); p1.addPoints(...points); if (shaded) p1.addHatching(-Math.PI/4, 2); p1.addOutline(); polygons.draw(turtle, p1, true); } } class Quad { constructor(i1, i2, i3, i4) { this.indices = [i1, i2, i3, i4]; } draw() { var points = []; this.indices.forEach(i => points.push([particles[i].x*scale, particles[i].y*scale+offset_y])); drawPoints(points); } } class Spring { constructor(index1, index2) { this.index1 = index1; this.index2 = index2; this.length = Math.hypot(particles[index1].x - particles[index2].x, particles[index1].y - particles[index2].y); } update() { var x1 = particles[this.index1].x; var y1 = particles[this.index1].y; var x2 = particles[this.index2].x; var y2 = particles[this.index2].y; const l = Math.max(0.01, Math.hypot(x1-x2, y1-y2)); const diff = this.length - l; if (diff<0) { const strength = 0.1; particles[this.index1].x += (x1 - x2) / l * diff * strength; if (!particles[this.index1].lock_y) particles[this.index1].y += (y1 - y2) / l * diff * strength; particles[this.index2].x += (x2 - x1) / l * diff * strength; if (!particles[this.index2].lock_y) particles[this.index2].y += (y2 - y1) / l * diff * strength; } } } class Curtain { constructor(ox, oy, width, height) { this.springs = []; this.particles = []; this.quads = []; const first_particle = particles.length; const density_w=density, density_h=2*density; for (var dy=0; dy<density_h; dy++) { for (var dx=0; dx<density_w; dx++) { var x = ox + width / (density_w-1) * dx; var y = oy - height + height / (density_h-1) * dy; this.addParticle(x, y, dy==0); } } this.opened_x = particles[first_particle].x; this.closed_x = particles[first_particle+density-1].x; for (var i=0; i<density_h-1; i++) { for (var j=0; j<density_w-1; j++) { const i1 = first_particle+i*density_w+j, i2=i1+1, i3=i1+density_w, i4=i3+1; this.quads.push(new Quad(i1, i2, i4, i3)); this.springs.push(new Spring(i1, i2)); this.springs.push(new Spring(i2, i4)); this.springs.push(new Spring(i4, i3)); this.springs.push(new Spring(i3, i1)); } } } addParticle(x, y, lock_y) { var particle = new Particle(x, y, x, y, lock_y); this.particles.push(particle); particles.push(particle); return particles.length - 1; } update(open) { for (var j=0; j<density; j++) { this.particles[j].x = this.closed_x + (this.opened_x - this.closed_x) * open * (density-1-j) / (density-1); } this.particles.forEach(p => p.update()); for (var i=0; i<50; i++) this.springs.forEach(p => p.update()); } queueDraw() { this.quads.forEach(q => things_to_draw.push(q)); } } function drawFloor() { for (var layer=0; layer<thickness; layer++) { const tstep = .25; const inset = (thickness-1-layer) * tstep; turtle.jump(-95, offset_y+inset); turtle.goto(95, offset_y+inset); } } var curtains = []; function walk(i, t) { if (i==0) { iterations_t = iterations * t; polygons = new Polygons(); if (t==0 || t==1) { iteration=0; curtains = []; curtains.push(new Curtain(0, 0, -5, 10)); curtains.push(new Curtain(0, 0, +5, 10)); } for (; iteration<iterations_t; iteration++) { var open = (Math.cos(Math.min(iteration*0.05, Math.PI*4))+1)/2; curtains.forEach(c=>c.update(open)); } curtains.forEach(c=>c.queueDraw()); //drawFloor(); } if (things_to_draw.length < 1) { return false; } things_to_draw.pop().draw(); return true; } //// function sleep(milliseconds) { start=Date.now(); while (Date.now()-start<milliseconds); } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; }