Based on Poincaré disk model #1. The tiles can be filled using an alternating pattern when k is even (again using code from David E. Joyce - mathcs.clarku.edu/~djoyce/poincare/).
Useful Resources:
en.wikipedia.org/wiki/poincar%c3%a9_disk_model
strauss.hosted.uark.edu/papers/hypcomp.pdf
mathcs.clarku.edu/~djoyce/poincare/
shadertoy.com/view/3tbgdd
#Poincare
Log in to post a comment.
// Poincaré disk model #2. Created by Reinder Nijhoff 2021 - @reindernijhoff // // https://turtletoy.net/turtle/2341de990a // // This is my second attempt at drawing the Poincaré disk model in a turtle. In my first attempt, I tried to follow the // construction as explained in [1], but failed at deeper recursion. // Now I am using the same algorithm as David E. Joyce[2]. First the center polygon is constructed, then adjacent polygons // are constructed by (recursive) reflection. // // Geodesics are represented as vec3's u, v, r2 (following @matt_zucker[3]): // * either a circle centered at (u, v) with squared radius r if r2 > 0 // * or a diameter of the unit circle with normal (u, v) if r2 == 0 // // [1] https://strauss.hosted.uark.edu/papers/hypcomp.pdf // [2] https://mathcs.clarku.edu/~djoyce/poincare/ // [3] https://www.shadertoy.com/view/3tBGDD // Canvas.setpenopacity(.5); const turtle = new Turtle(); const n = 3; // min=3, max=13, step=1 let k = 4; // min=4, max=14, step=2 const recursion=6; // min=1, max=6, step=1 const size = 95; // min=10, max=100, step=1 const centerOffset = 0; // min=0, max=1, step=0.01 const drawBisectors = 1; // min=0, max=1, step=1 (No, Yes) if ( n==3 ) { k = Math.max(k,8); } else if (n == 4) { k = Math.max(k,6); } else { k = Math.max(k,4); } // Hyperbolic geometry functions // Construction 1.1. Construct a circle through three given non-collinear points A,B, C. function circleConstruct3Points(a, b, c) { const lab = bisector(a, b); const lbc = bisector(b, c); const center = cross(lab, lbc); return compass(scale(center,1/center[2]), a); } // Construction 1.2. Invert a point through a circle C with center O. function circleInvert(c, p) { const po = sub(p, c); return add(c, scale(po, c[2] / dot(po, po))); } // Construction 1.6. Given a circle C with center O, and point A in the exterior of C, // construct the unique circle C with center A, orthogonal to C. function orthogonalCircle(c, a) { const ao = sub(a, c); const h2 = dot(ao, ao); const r2 = h2 - c[2]; return [...a, r2]; } // Construction 2.1. Given points A,B ∈ D, construct the hyperbolic geodesic AB. // Equivalently, given two points A,B and a circle C∞ with center O, construct the unique // circle through A,B that is orthogonal to C∞ function geodesic(c, a, b) { if (Math.abs(a[0]*b[1] - b[0]*a[1]) < 1.0e-14) { const n = normalize([b[1] - a[1], a[0] - b[0]]); return [...n, 0]; } const ai = circleInvert(c, a); return circleConstruct3Points(a, b, ai); } // Construction 3.1. Given A,B ∈ D, construct the perpendicular bisector of the segment AB. // Similarly, construct the midpoint of the segment AB. function hyperbolicBisector(q, p) { const pp = dot(p, p); const qq = dot(q, q); if (pp < 1e-14) { const h2 = 1/qq; return [...scale(q,h2), (h2 - 1)]; } else if (qq < 1e-14) { const h2 = 1/pp; return [...scale(p,h2), (h2 - 1.)]; } else if (Math.abs(pp-qq) < 1e-14) { return [...normalize(sub(p,q)), 0]; } const d = sub(q, p); const k = (1 - dot(p,p))/(dot(d,d) + 2*dot(p,d)); return orthogonalCircle([0,0,1], add(p, scale(d, k))); } // invert point about geodesic (either arc or line) function reflectPG(p, c) { if (c[2] == 0) { return add(p, scale(c, -2*dot(p, c))); } else { return circleInvert(c, p); } } function compass(center, p) { return [...center, dist_sqr(center, p)]; } function bisector(a, b) { const n = sub(b, a); return [...n, -dot(n, midpoint(a, b))]; } // Construction of center polygon and reflecting adjacent polygons using // David E. Joyce's code (https://mathcs.clarku.edu/~djoyce/poincare/). function constructCenterPolygonVertices(n, k) { // Initialize P as the center polygon in an n-k regular tiling. // Let ABC be a triangle in a regular (n,k0-tiling, where // A is the center of an n-gon (also center of the disk), // B is a vertex of the n-gon, and // C is the midpoint of a side of the n-gon adjacent to B. const angleA = Math.PI/n; const angleB = Math.PI/k; const angleC = Math.PI/2.0; // For a regular tiling, we need to compute the distance s from A to B. const sinA = Math.sin(angleA); const sinB = Math.sin(angleB); let s = Math.sin(angleC - angleB - angleA) / Math.sqrt(1.0 - sinB*sinB - sinA*sinA); // Now determine the coordinates of the n vertices of the n-gon. // They're all at distance s from the center of the Poincare disk. const P = []; for (let i=0; i<n; ++i) { P[i] = [s * Math.cos((3+2*i)*angleA),s * Math.sin((3+2*i)*angleA)]; } if (Math.abs(centerOffset) > 0) { const offset = [centerOffset * Math.cos(3*angleA) * s, centerOffset * Math.sin(3*angleA) * s]; const d = dot(offset, offset); const invCtr = scale(offset, 1/d); for (let i=0; i<n; ++i) { const t = (1/d - 1)/dist_sqr(P[i], invCtr); P[i] = add(scale(P[i], t), scale(invCtr, (1 - t))); P[i][0] = -P[i][0]; // Keep chirality. MLA does this. } } return P; } function* PoincareDisk(n, k) { let totalPolygons = 1; let a = n*(k-3); // polygons in first layer joined by a vertex let b = n; // polygons in first layer joined by an edge let next_a, next_b; for (let l=1; l<recursion; ++l) { if (k == 3) { next_a = a + b; next_b = (n-6)*a + (n-5)*b; } else { next_a = ((n-2)*(k-3) - 1) * a + ((n-3)*(k-3) - 1) * b; next_b = (n-2)*a + (n-3)*b; } totalPolygons += a + b; a = next_a; b = next_b; } // reflect P thru the point or the side indicated by the side s // to produce the resulting polygon const createNextPolygonVertices = (p, s) => { const polygon = []; const g = geodesic([0,0,1], p[s], p[(s+1)%n]); for (let i=0; i<n; ++i) { const j = (n+s-i+1) % n; polygon[j] = reflectPG(p[i], g); } return polygon; } // rule codes // 0: initial polygon. Needs neighbors on all n sides // 1: polygon already has 2 neighbors, but one less around corner needed // 2: polygon already has 2 neighbors // 3: polygon already has 3 neighbors // 4: polygon already has 4 neighbors const P = [{ vertices: constructCenterPolygonVertices(n, k), rule: 0, alternating: 0 }]; yield P[0]; for (let j=1, i=0; i<totalPolygons; ++i) { let r = P[i].rule; const special = (r==1); if (special) { r = 2; } const start = (r==4)? 3 : 2; const quantity = (k==3 && r!=0) ? n-r-1 : n-r; for (let s=start; s<start+quantity; ++s) { // Create a polygon adjacent to P[i] yield P[j] = { vertices: createNextPolygonVertices(P[i].vertices, s%n), rule: (k==3 && s==start && r!=0) ? 4 : 3, alternating: (P[i].alternating == P[0].alternating) ? 1 : 0 }; j++; let m = special ? 2 : (s==2 && r!=0) ? 1 : 0; for ( ; m<k-3; ++m) { // Create a polygon adjacent to P[j-1] yield P[j] = { vertices: createNextPolygonVertices(P[j-1].vertices, 1), rule: (n==3 && m==k-4)? 1 : 2, alternating: (P[j-1].alternating == P[0].alternating) ? 1 : 0 }; j++; } } } } // // Draw Poincaré disk model // // outline turtle.jump(0, -size); turtle.circle(size); const diskIterator = PoincareDisk(n, k); function walk(i) { const d = diskIterator.next(); if (!d.done) { const p = d.value.vertices; const ps = new Polygons(); const po = ps.create(); for (let i=0; i<p.length; i++) { const v0 = p[i]; const v1 = p[(i+1) % p.length]; addGeodesicSegment(po, v0, v1, geodesic([0,0,1], v0, v1)); if (drawBisectors) { drawGeodesic(hyperbolicBisector(v0, v1)); } } po.addOutline(); if (k % 2 == 0) { if (d.value.alternating) { po.addHatching(Math.PI/4, .5); ps.draw(turtle, po); } } else { po.addHatching(Math.PI/4, .1 + Math.random()); ps.draw(turtle, po); } } return !d.done; } function addGeodesicSegment(p, p1, p2, c, rec=0) { if (rec==0) { p.addPoints(scale(p1,size)); } if (dist(p1, p2) > .5/size && c[2] != 0 && rec < 50) { const m = add(scale(normalize(sub(midpoint(p1, p2), c)), Math.sqrt(c[2])), c); addGeodesicSegment(p, p1, m, c, rec+1); addGeodesicSegment(p, m, p2, c, rec+1); } else { p.addPoints(scale(p2,size)); } } const geodesicsDrawn = {}; function drawGeodesic(c) { // make sure every geodesic is drawn once if (c[2] == 0) { c[0] * Math.sign(c[1]); c[1] = Math.abs(c[1]); } const hash = toFixed(c); if (geodesicsDrawn[hash]) { return; } geodesicsDrawn[hash] = true; if (c[2] != 0) { const r = Math.sqrt(c[2]); turtle.jump(scale([c[0],c[1]-r],size)); turtle.circle(r*size); } else { turtle.jump(scale([c[1], -c[0]], 200)); turtle.goto(scale([c[1], -c[0]], -200)); } } function toFixed(n) { let s = ''; n.forEach(i => { i = Math.abs(i) < 1e-4 ? 0 : i; s += `${i.toFixed(3)}-`; }); return s; } // // 2D Vector math // function cross(a, b) { return [a[1]*b[2]-a[2]*b[1], a[2]*b[0]-a[0]*b[2], a[0]*b[1]-a[1]*b[0]]; } function midpoint(a, b) { return [(a[0]+b[0])*.5, (a[1]+b[1])*.5]; } function equal(a,b) { return .001>dist_sqr(a,b); } function scale(a,b) { return [a[0]*b,a[1]*b]; } function add(a,b) { return [a[0]+b[0],a[1]+b[1]]; } function sub(a,b) { return [a[0]-b[0],a[1]-b[1]]; } function dot(a,b) { return a[0]*b[0]+a[1]*b[1]; } function dist_sqr(a,b) { return (a[0]-b[0])**2+(a[1]-b[1])**2; } function dist(a,b) { return Math.sqrt(dist_sqr(a,b)); } function length(a) { return Math.sqrt(dot(a,a)); } function normalize(a) { return scale(a, 1/length(a)); } function lerp(a,b,t) { return [a[0]*(1-t)+b[0]*t,a[1]*(1-t)+b[1]*t]; } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; }