Mutate your path!
In 8 directions! (or 4)
(...while maintaining cell size constraints)
Log in to post a comment.
// Forked from "Bounded path mutation 📿" by Jurgen // https://turtletoy.net/turtle/4e696524dd // Forked from "Path mutation" by reinder // https://turtletoy.net/turtle/ead5b35378 // Path mutation. Created by Reinder Nijhoff 2024 - @reindernijhoff // // https://turtletoy.net/turtle/ead5b35378 // const evolution = 4; //min=4 max=8 step=4 (In 4 directions, In 8 directions) const mutationRate = .195; // min=0.0, max=0.5, step=0.001 const mutationDefect = 57.3; // min=0, max=100, step=0.1 const mutationCountMin = 10; // min=1, max=100, step=1 const mutationCountMax = 30; // min=1, max=150, step=1 const grid = 13; // min=3, max=25, step=2 const pathInput = `M0,-37 C-10,-37 -26,-22 -30,-14 C-32,-10 -38,-3 -35,2 C-28,17 -7,39 13,29 C14,28 17,30 18,29 C59,9 37,-36 -3,-36`; // type=path, bbox=-40,-40,80,80 Click here to redraw the path let seed = 1; // min=1, max=1000, step=1 let tokens = pathInput.match(/([0-9.-]+|[MLC])/g); const populatedGrid = runUglyCodeToPopulateTheGrid(); function Translate(x,y) { return p => [p[0]+x, p[1]+y]; } function Scale(s) { return p => [p[0]*s, p[1]*s]; } function lerpTokens(a, b, p) { return a.map((token, index) => { if (isNumber(token)) { return token * (1-p) + b[index] * p; } else return token; }); } function mutation(tokens) { return tokens.map(token => { if (isNumber(token)) { return random() < mutationRate ? token - (random()-.5)*mutationDefect : token; } else return token; }); } function walk(i) { const y = i/grid|0, x = i%grid; const path = Path(populatedGrid[x][y]); const steps = path.length() | 0; const turtle = new Tortoise(path.p(0)); turtle.addTransform(Scale( 132 / Math.max(...path.size()) / grid)); turtle.addTransform(Translate((x+.5)*180/grid-90, (y+.5)*180/grid-90)); for (let i=0; i<steps; i++) { turtle.goto(path.p( i/steps )); } return i < grid**2-1; } function isNumber(n) { return !isNaN(parseFloat(n)) && isFinite(n); } function random() { let r = 1103515245 * ((++seed >> 1) ^ seed); r = 1103515245 * (r ^ (r>>3)); r = r ^ (r >> 16); return r / 32768 % 1; } //////////////////////////////////////////////////////////////// // Modified path utility code. Created by Reinder Nijhoff 2023 // Parses a single SVG path (only M, C and L statements are // supported). The p-method will return // [...position, ...derivative] for a normalized point t. // // https://turtletoy.net/turtle/46adb0ad70 // // Modified by Jurgen Westerhof 2024, added bb() and size() //////////////////////////////////////////////////////////////// function Path(tokens) { class MoveTo { constructor(p) { this.p0 = p; } p(t, s) { return [...this.p0, 1, 0]; } length() { return 0; } } class LineTo { constructor(p0, p1) { this.p0 = p0, this.p1 = p1; } p(t, s = 1) { const nt = 1 - t, p0 = this.p0, p1 = this.p1; return [ nt*p0[0] + t*p1[0], nt*p0[1] + t*p1[1], (p1[0] - p0[0]) * s, (p1[1] - p0[1]) * s, ]; } length() { const p0 = this.p0, p1 = this.p1; return Math.hypot(p0[0]-p1[0], p0[1]-p1[1]); } } class BezierTo { constructor(p0, c0, c1, p1) { this.p0 = p0, this.c0 = c0, this.c1 = c1, this.p1 = p1; } p(t, s = 1) { const nt = 1 - t, p0 = this.p0, c0 = this.c0, c1 = this.c1, p1 = this.p1; return [ nt*nt*nt*p0[0] + 3*t*nt*nt*c0[0] + 3*t*t*nt*c1[0] + t*t*t*p1[0], nt*nt*nt*p0[1] + 3*t*nt*nt*c0[1] + 3*t*t*nt*c1[1] + t*t*t*p1[1], (3*nt*nt*(c0[0]-p0[0]) + 6*t*nt*(c1[0]-c0[0]) + 3*t*t*(p1[0]-c1[0])) * s, (3*nt*nt*(c0[1]-p0[1]) + 6*t*nt*(c1[1]-c0[1]) + 3*t*t*(p1[1]-c1[1])) * s, ]; } length() { return this._length || ( this._length = Array.from({length:25}, (x, i) => this.p(i/25)).reduce( (a,c,i,v) => i > 0 ? a + Math.hypot(c[0]-v[i-1][0], c[1]-v[i-1][1]) : a, 0)); } } class Path { constructor(tokens) { this.segments = []; this.parsePath(tokens); } parsePath(t) { for (let s, i=0; i<t.length;) { switch (t[i++]) { case 'M': this.add(new MoveTo(s=[t[i++],t[i++]])); break; case 'L': this.add(new LineTo(s, s=[t[i++],t[i++]])); break; case 'C': this.add(new BezierTo(s, [t[i++],t[i++]], [t[i++],t[i++]], s=[t[i++],t[i++]])); break; default: i++; } } } add(segment) { this.segments.push(segment); this._length = 0; this._bb = undefined; this._size = undefined; } length() { return this._length || (this._length = this.segments.reduce((a,c) => a + c.length(), 0)); } bb(sampleRate = .01) { if(this._bb === undefined) { this._bb = Array.from({length: 1 / sampleRate + 1}) .map((v, i) => this.p(i * sampleRate)) .reduce((p, c) => [[Math.min(p[0][0], c[0]), Math.min(p[0][1], c[1])],[Math.max(p[1][0], c[0]), Math.max(p[1][1], c[1])]], [[Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER], [Number.MIN_SAFE_INTEGER, Number.MIN_SAFE_INTEGER]]); } return this._bb; } size(sampleRate = .01) { if(this._size === undefined) { this._size = [this.bb(sampleRate)].map(v => [v[1][0] - v[0][0], v[1][1] - v[0][1]]).pop(); } return this._size; } p(t) { t = Math.max(Math.min(t, 1), 0) * this.length(); for (let l=0, i=0, sl=0; i<this.segments.length; i++, l+=sl) { sl = this.segments[i].length(); if (t > l && t <= l + sl) { return this.segments[i].p((t-l)/sl, sl/this.length()); } } return this.segments[Math.min(1, this.segments.length-1)].p(0); } } return new Path(tokens); } //////////////////////////////////////////////////////////////// // Tortoise utility code. Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/102cbd7c4d //////////////////////////////////////////////////////////////// function Tortoise(x, y) { class Tortoise extends Turtle { constructor(x, y) { super(x, y); this.ps = Array.isArray(x) ? [...x] : [x || 0, y || 0]; this.transforms = []; } addTransform(t) { this.transforms.push(t); this.jump(this.ps); return this; } applyTransforms(p) { if (!this.transforms) return p; let pt = [...p]; this.transforms.map(t => { pt = t(pt); }); return pt; } goto(x, y) { const p = Array.isArray(x) ? [...x] : [x, y]; const pt = this.applyTransforms(p); if (this.isdown() && (this.pt[0]-pt[0])**2 + (this.pt[1]-pt[1])**2 > 4) { this.goto((this.ps[0]+p[0])/2, (this.ps[1]+p[1])/2); this.goto(p); } else { super.goto(pt); this.ps = p; this.pt = pt; } } position() { return this.ps; } } return new Tortoise(x,y); } // Way too ugly code stashed far away at the bottom so nobody will look at it function runUglyCodeToPopulateTheGrid() { const roundsMin = Math.min(mutationCountMin, mutationCountMax); const roundsMax = Math.max(mutationCountMin, mutationCountMax); const keyCells = []; for(let i = 0; i < evolution; i++) { let rounds = roundsMin + ((roundsMax - roundsMin) * random() | 0); keyCells.push(Array.from({length: rounds}).reduce((p, c) => mutation(p), tokens)); } if(evolution == 4) { keyCells.splice(1, 0, lerpTokens(keyCells[0], keyCells[1], .5)); keyCells.splice(3, 0, lerpTokens(keyCells[0], keyCells[3], .5)); keyCells.splice(4, 0, lerpTokens(keyCells[2], keyCells[5], .5)); keyCells.splice(6, 0, lerpTokens(keyCells[5], keyCells[6], .5)); } keyCells.splice(4, 0, tokens); const populatedGrid = Array.from({length: grid}).map((v, c) => Array.from({length: grid})); const beg = 0; const mid = grid / 2 | 0; const end = grid - 1; [beg, mid, end].forEach(r => [beg, mid, end].forEach(c => populatedGrid[c][r] = keyCells.pop())); for(let row = beg; row <= end; row += mid) { for(let i = 0; i < 2; i++) { for(let col = 1; col < mid; col++) { populatedGrid[col + i * mid][row] = lerpTokens( populatedGrid[i * mid][row], populatedGrid[(i + 1) * mid][row], col / mid ); } } } for(let col = beg; col <= end; col++) { for(let i = 0; i < 2; i++) { for(let row = 1; row < mid; row++) { populatedGrid[col][row + i * mid] = lerpTokens( populatedGrid[col][i * mid], populatedGrid[col][(i + 1) * mid], row / mid ); } } } return populatedGrid; }