The Pythagoras tree
Log in to post a comment.
// You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(1); // Global code will be evaluated once. const turtle = new Turtle(); const polygons = Polygons(); const Matrix = class { constructor (m) { this.m = m; } rotate (v) { const rad = Math.PI * v / 180; const cos = Math.cos(rad); const sin = Math.sin(rad); return new Matrix([ cos * this.m[0] + sin * this.m[2], cos * this.m[1] + sin * this.m[3], cos * this.m[2] - sin * this.m[0], cos * this.m[3] - sin * this.m[1], this.m[4], this.m[5] ]); } translate (x, y = 0) { return new Matrix([ this.m[0], this.m[1], this.m[2], this.m[3], this.m[4] + x * this.m[0] + y * this.m[2], this.m[5] + x * this.m[1] + y * this.m[3] ]); } }; const push = (m) => { if (m[4] - 0.5 * m[0] < box[0]) box[0] = m[4] - 0.5 * m[0]; else if (m[4] + 0.5 * m[0] > box[2]) box[2] = m[4] + 0.5 * m[0]; if (m[5] + 0.5 * m[3] < box[1]) box[1] = m[5] + 0.5 * m[3]; else if (m[5] - 0.5 * m[3] > box[3]) box[3] = m[5] - 0.5 * m[3]; shapes.push(m); }; const SQUARE = (m, size, a = 0, s = 0) => { m[6] = size; m[7] = a; m[8] = s; push(m); }; const transform = (x, y, m) => { const m0 = m[0] * zoom; const m1 = m[1] * zoom; const m2 = m[2] * zoom; const m3 = m[3] * zoom; const m4 = m[4] * zoom - ox; const m5 = m[5] * zoom - oy; return [ m0 * x + m2 * y + m4, m1 * x + m3 * y + m5 ]; }; const scale = (margin = 0.9) => { zoom = Math.min( margin * 200 / (box[2] - box[0]), margin * 200 / (box[3] - box[1]) ); ox = (box[0] + box[2]) * 0.5 * zoom; oy = (box[3] + box[1]) * 0.5 * zoom; }; const draw = () => { if (!shapes.length) return false; const m = shapes.pop(); const p = polygons.create(); const p0 = transform(0, 0, m); const p1 = transform(m[6], 0, m); const p2 = transform(m[6], m[6], m); const p3 = transform(0, m[6], m); p.addPoints(p0, p1, p2, p3); if (m[8] !== 0) p.addHatching(m[7], m[8]); p.addOutline(0); polygons.draw(turtle, p); return true; } ///////////////////// Pytagoras Tree /////////////////////// const branch = (m, size, angle) => { SQUARE(m.m, Math.abs(size)); if (size < 0.75) return; const v1 = size * Math.cos(angle * Math.PI / 180); const v2 = size * Math.sin(angle * Math.PI / 180); branch(m.translate(size, 0).rotate(angle).translate(-v1, -v1), v1, angle + (Math.random() - Math.random()) * 15); branch(m.rotate(angle - 90).translate(0, -v2), v2, angle + (Math.random() - Math.random()) * 15); }; /////////////////////////////////////////////////////////////////// let zoom = 0, ox = 0, oy = 0; const box = [100, 100, -100, -100]; const shapes = []; const size = 200 / 7; const m = new Matrix([1, 0, 0, 1, 0, 0]); branch(m, size, 15 + Math.random() * 60); scale(0.97); // The walk function will be called until it returns false. function walk(i) { return draw(); } //////////////////////////////////////////////////////////////// // reinder's occlusion code parts from "Cubic space division #2" // Optimizations and code clean-up by ge1doot //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d line to draw this.aabb = []; // AABB bounding box } addPoints(...points) { for (let i = 0; i < points.length; i++) this.cp.push(points[i]); this.aabb = this.AABB(); } addOutline(s = 0) { for (let i = s, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { if (this.dp.length === 0) return; for (let i = 0, l = this.dp.length; i < l; i+=2) { t.penup(); t.goto(this.dp[i]); t.pendown(); t.goto(this.dp[i + 1]); } } AABB() { let xmin = 2000; let xmax = -2000; let ymin = 2000; let ymax = -2000; for (let i = 0, l = this.cp.length; i < l; i++) { const x = this.cp[i][0]; const y = this.cp[i][1]; if (x < xmin) xmin = x; if (x > xmax) xmax = x; if (y < ymin) ymin = y; if (y > ymax) ymax = y; } // Bounding box: center x, center y, half w, half h return [ (xmin + xmax) * 0.5, (ymin + ymax) * 0.5, (xmax - xmin) * 0.5, (ymax - ymin) * 0.5 ]; } addHatching(a, d) { const tp = new Polygon(); tp.cp.push( [this.aabb[0] - this.aabb[2], this.aabb[1] - this.aabb[3]], [this.aabb[0] + this.aabb[2], this.aabb[1] - this.aabb[3]], [this.aabb[0] + this.aabb[2], this.aabb[1] + this.aabb[3]], [this.aabb[0] - this.aabb[2], this.aabb[1] + this.aabb[3]] ); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); for (let i = 0, l = tp.dp.length; i < l; i++) this.dp.push(tp.dp[i]); } inside(p) { // find number of i ntersection points from p to far away // if even your outside const p1 = [0.1, -1000]; let int = 0; for (let i = 0, l = this.cp.length; i < l; i++) { if ( (p[0]-this.cp[i][0])**2 + (p[1]-this.cp[i][1])**2 <= 0.01) return false; if ( this.vec2_find_segment_intersect( p, p1, this.cp[i], this.cp[(i + 1) % l] ) !== false ) { int++; } } return int & 1; } boolean(p, diff = true) { // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.vec2_find_segment_intersect( ls0, ls1, p.cp[j], p.cp[(j + 1) % cl] ); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; for (let i = 0, len = int.length; i < len; i++) { let j = i; const item = int[j]; for ( const db = (item[0] - ls0[0]) * cmpx + (item[1] - ls0[1]) * cmpy; j > 0 && (int[j - 1][0] - ls0[0]) * cmpx + (int[j - 1][1] - ls0[1]) * cmpy < db; j-- ) int[j] = int[j - 1]; int[j] = item; } for (let j = 0; j < int.length - 1; j++) { if ( (int[j][0] - int[j + 1][0]) ** 2 + (int[j][1] - int[j + 1][1]) ** 2 >= 0.01 ) { if ( diff === !p.inside([ (int[j][0] + int[j + 1][0]) / 2, (int[j][1] + int[j + 1][1]) / 2 ]) ) { ndp.push(int[j], int[j + 1]); } } } } } this.dp = ndp; return this.dp.length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs vec2_find_segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [ l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1]) ]; } return false; } }; return { create() { return new Polygon(); }, draw(turtle, p) { let vis = true; for (let j = 0; j < polygonList.length; j++) { const p1 = polygonList[j]; // AABB overlapping test - still O(N2) but very fast if ( Math.abs(p1.aabb[0] - p.aabb[0]) - (p.aabb[2] + p1.aabb[2]) < 0 && Math.abs(p1.aabb[1] - p.aabb[1]) - (p.aabb[3] + p1.aabb[3]) < 0 ) { if (p.boolean(p1) === false) { vis = false; break; } } } if (vis) { p.draw(turtle); polygonList.push(p); } } }; }