Maeder´s Owl
3d-meier.de/tut3/seite35.html
Log in to post a comment.
// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(1);
// Global code will be evaluated once.
const turtle = new Turtle();
turtle.penup();
turtle.goto(0,0);
turtle.pendown();
x=.0
y=.0
z=.0
u=.0
v=.0
scale=50
const rotatex=50; // min=0, max=360, step=1
const rotatey=50; // min=0, max=360, step=1
const rotatez=50; // min=0, max=360, step=1
// The walk function will be called until it returns false.
function walk()
{
for(u=0;u<=4*3.14;u=u+0.02)
{
for(v=0.001;v<=1;v=v+0.02)
{
x=(v*Math.cos(u)-0.5*v*v*Math.cos(2*u))*scale
y=(-v*Math.sin(u)-0.5*v*v*Math.sin(2*u))*scale
z=4*v*Math.pow(1.5,Math.log(v))*Math.cos(3*u/2)/3*scale
// Rotation in x
xn=x
yn=y*Math.cos(rotatex/360*2*3.1415)-z*Math.sin(rotatex/360*2*3.1415)
zn=y*Math.sin(rotatex/360*2*3.1415)+z*Math.cos(rotatex/360*2*3.1415)
x=xn
y=yn
z=zn
// Rotation in y
xn=x*Math.cos(rotatey/360*2*3.1415)+z*Math.sin(rotatey/360*2*3.1415)
yn=y
zn=-x*Math.sin(rotatey/360*2*3.1415)+z*Math.cos(rotatey/360*2*3.1415)
x=xn
y=yn
z=zn
// Rotation in y
xn=x*Math.cos(rotatez/360*2*3.1415)-y*Math.sin(rotatez/360*2*3.1415)
yn=x*Math.sin(rotatez/360*2*3.1415)+y*Math.cos(rotatez/360*2*3.1415)
zn=z
// convert to isometric view, orthographic
// x' = (x - z) * cos(θ)
// y' = y + (x + z) * sin(θ)
// θ = 30° for isometric
xiso=(xn-zn)*Math.cos(3.1415/6)
yiso=yn+(xn+zn)*Math.sin(3.1415/6)
turtle.goto(xiso,yiso);
}
}
return false
}