const addMountainHatching = false const addTreeHatching = false const drawMoon = true const addLakeSurface = false // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(1); // Global code will be evaluated once. const turtle = new Turtle(); class Vec2 { constructor(x, y) { this.x = x this.y = y } add(v) { return new Vec2(this.x + v.x, this.y + v.y) } sub(v) { return new Vec2(this.x - v.x, this.y - v.y) } scale(n) { return new Vec2(this.x * n, this.y * n) } distance(v) { return Math.sqrt((this.x - v.x) ** 2 + (this.y - v.y) ** 2) } } class Bezier { constructor(steps = 10) { this.steps = steps this.wayPoints = [] this.nodes = [] this.distances = [] } addWayPoint(pt) { this.wayPoints.push(pt) if (this.wayPoints.length > 3) { const j = this.wayPoints.length - 1 if (j % 2 === 0) return for (let i = 0; i < this.steps; i++) { const u = i / this.steps let node if (j === 3) { node = this.interpolate( u, this.wayPoints[j - 3], this.wayPoints[j - 2], this.wayPoints[j - 1], this.wayPoints[j] ) } else { const k = j - 2 const pt4 = this.wayPoints[k].scale(2).sub(this.wayPoints[k - 1]) node = this.interpolate( u, this.wayPoints[k], pt4, this.wayPoints[k + 1], this.wayPoints[k + 2] ) } let distance = 0 if (this.nodes.length > 0) { distance = this.distances[this.distances.length - 1] + node.distance(this.nodes[this.nodes.length - 1]) } this.nodes.push(node) this.distances.push(distance) } } } interpolate(u, pt1, pt2, pt3, pt4) { return ( pt1.scale(-1).add(pt2.scale(3)).sub(pt3.scale(3)).add(pt4).scale(u ** 3) .add(pt1.scale(3).sub(pt2.scale(6)).add(pt3.scale(3)).scale(u ** 2)) .add(pt1.scale(-3).add(pt2.scale(3)).scale(u)) .add(pt1) ) } } // helpers function avg(items) { return items.reduce((acc, curr) => acc + curr, 0) / items.length } function map(v, min, max, omin, omax) { return omin + (v - min) / (max - min) * (omax - omin) } function clamp(v, min, max) { return Math.max(Math.min(v, max), min) } function lerp(a, b, fract) { return a + (b - a) * fract } function randomFrom(arr) { return arr[Math.floor(Math.random() * arr.length)] } function isWithin(x, min, max) { return min <= x && x <= max } // the following is copied from: https://turtletoy.net/turtle/789cce3829 let lineSegmentsDrawn = [] // polygon functions function LineSegment(p1, p2) { this.p1 = p1; this.p2 = p2; } LineSegment.prototype.unique = function() { for (let i=0, l=lineSegmentsDrawn.length; i<l; i++) { const ls = lineSegmentsDrawn[i]; if ( (equal2(this.p1, ls.p1) && equal2(this.p2, ls.p2)) || (equal2(this.p1, ls.p2) && equal2(this.p2, ls.p1)) ){ return false; } } lineSegmentsDrawn.push(this); return true; } function Polygon() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d line to draw: array of linesegments } Polygon.prototype.clone = function() { const p = new Polygon() p.cp = [...this.cp] p.dp = [...this.dp] return p } Polygon.prototype.addOutline = function(s=0) { for (let i=s, l=this.cp.length; i<l; i++) { this.dp.push(new LineSegment(this.cp[i], this.cp[(i+1)%l])); } } Polygon.prototype.createPoly = function(x,y,c,r,a) { this.cp = []; for (let i=0; i<c; i++) { this.cp.push( [x + Math.sin(i*Math.PI*2/c+a) * r, y + Math.cos(i*Math.PI*2/c+a) * r] ); } } Polygon.prototype.addHatching = function(a,d) { // todo, create a tight bounding polygon, for now fill screen const tp = new Polygon(); tp.createPoly(0,0,4,200,Math.PI*.5); const dx = Math.sin(a)*d, dy = Math.cos(a)*d; const cx = Math.sin(a)*200, cy = Math.cos(a)*200; for (let i = .5; i<150/d; i++) { tp.dp.push(new LineSegment([dx*i+cy,dy*i-cx], [dx*i-cy,dy*i+cx])); tp.dp.push(new LineSegment([-dx*i+cy,-dy*i-cx], [-dx*i-cy,-dy*i+cx])); } tp.boolean(this, false); this.dp = this.dp.concat(tp.dp); } Polygon.prototype.draw = function(t) { if (this.dp.length ==0) { return; } for (let i=0, l=this.dp.length; i<l; i++) { const d = this.dp[i]; if (d.unique()) { if (!equal2(d.p1, t.pos())) { t.penup(); t.goto(d.p1); t.pendown(); } t.goto(d.p2); } } } Polygon.prototype.inside = function(p) { // find number of intersections from p to far away - if even you're outside const p1 = [0, -1000]; let int = 0; for (let i=0, l=this.cp.length; i<l; i++) { if (segment_intersect2(p, p1, this.cp[i], this.cp[(i+1)%l])) { int ++; } } return int & 1; } Polygon.prototype.boolean = function(p, diff = true) { // very naive polygon diff algorithm - made this up myself const ndp = []; for (let i=0, l=this.dp.length; i<l; i++) { const ls = this.dp[i]; // find all intersections with clip path const int = []; for (let j=0, cl=p.cp.length; j<cl; j++) { const pint = segment_intersect2(ls.p1,ls.p2,p.cp[j],p.cp[(j+1)%cl]); if (pint) { int.push(pint); } } if (int.length == 0) { // 0 intersections, inside or outside? if (diff != p.inside(ls.p1)) { ndp.push(ls); } } else { int.push(ls.p1); int.push(ls.p2); // order intersection points on line ls.p1 to ls.p2 const cmp = sub2(ls.p2,ls.p1); int.sort((a,b) => dot2(sub2(a,ls.p1),cmp)-dot2(sub2(b,ls.p1),cmp)); for (let j=0; j<int.length-1; j++) { if (!equal2(int[j], int[j+1]) && diff != p.inside(scale2(add2(int[j],int[j+1]),.5))) { ndp.push(new LineSegment(int[j], int[j+1])); } } } } this.dp = ndp; return this.dp.length > 0; } // vec2 functions const equal2=(a,b)=>0.001>dist_sqr2(a,b); const scale2=(a,b)=>[a[0]*b,a[1]*b]; const add2=(a,b)=>[a[0]+b[0],a[1]+b[1]]; const sub2=(a,b)=>[a[0]-b[0],a[1]-b[1]]; const dot2=(a,b)=>a[0]*b[0]+a[1]*b[1]; const dist_sqr2=(a,b)=>(a[0]-b[0])*(a[0]-b[0])+(a[1]-b[1])*(a[1]-b[1]); const segment_intersect2=(a,b,d,c)=>{ const e=(c[1]-d[1])*(b[0]-a[0])-(c[0]-d[0])*(b[1]-a[1]); if(0==e)return false; c=((c[0]-d[0])*(a[1]-d[1])-(c[1]-d[1])*(a[0]-d[0]))/e; d=((b[0]-a[0])*(a[1]-d[1])-(b[1]-a[1])*(a[0]-d[0]))/e; return 0<=c&&1>=c&&0<=d&&1>=d?[a[0]+c*(b[0]-a[0]),a[1]+c*(b[1]-a[1])]:false; } const splinePolys = [] const treePolys = [] // The walk function will be called until it returns false. function walk(i) { renderMountain(i) renderTree(i) // lake shore if (i === 0) { turtle.penup() turtle.goto(-80, 40) turtle.pendown() turtle.goto(80, 40) } // lake surface if (addLakeSurface && i === 0) { const poly = new Polygon() poly.cp.push([-90, 40], [90, 40], [90, 90], [-90, 90]) poly.addHatching(Math.PI / 8, 3) poly.draw(turtle) } // sky // if (i === 10) { // const poly = new Polygon() // poly.cp.push([-90, -90], [90, -90], [90, -55], [-90, -55]) // poly.addHatching(Math.PI * 2 - Math.PI / 8, 7) // for (let j = 0; j < splinePolys.length; j++) { // poly.boolean(splinePolys[j], true) // } // poly.draw(turtle) // } // hills // if (i === 10) { // const poly = new Polygon() // poly.cp.push([-90, -55], [90, -55], [90, 40], [-90, 40]) // // poly.addHatching(-0.2, 7) // for (let j = 0; j < 20; j++) { // let y = 40 - Math.log(j) * 28.5 // poly.dp.push(new LineSegment([-90, y], [90, y])) // } // for (let j = 0; j < treePolys.length; j++) { // poly.boolean(treePolys[j], true) // } // poly.draw(turtle) // } // moon if (drawMoon && i === 10) { const poly1 = new Polygon() poly1.createPoly(-60, -80, 50, 7, 0) poly1.addOutline() const poly2 = new Polygon() poly2.createPoly(-57, -82, 50, 6, 0) poly2.addOutline() poly2.boolean(poly1, false) poly2.draw(turtle) poly1.boolean(poly2, true) poly1.draw(turtle) } return i < 10 } function renderMountain(i) { let y = 10 - i let spline = new Bezier() let xcount = 15 let xmid = (xcount - 1) / 2 + (Math.random() * 4 - 2) let xstep = 180 / xcount let x = 0 for (; x < xcount; x++) { let xfactor = clamp((xmid - Math.abs(x - xmid) - 2) / xmid * 10 * 2, 0, 100) let ly = Math.random() * (Math.random() < 0.5 ? -1 : 1) * (((i + 2) / 10) * xfactor) + xfactor / 2 // if (y === 9) console.log(xfactor) spline.addWayPoint(new Vec2(x * xstep, ly, 0)) } let xfactor = 0 let ly = Math.random() * ((x + y) % 2 ? -1 : 1) * (((y + 2) / 10) * xfactor) spline.addWayPoint(new Vec2(x * xstep, ly, 0)) x++ xfactor = 0 ly = Math.random() * ((x + y) % 2 ? -1 : 1) * (((y + 2) / 10) * xfactor) spline.addWayPoint(new Vec2(x * xstep, ly, 0)) const boty = -30 const poly = new Polygon() for (let j = 0; j < spline.nodes.length; j++) { poly.cp.push([spline.nodes[j].x - 90, y - 55 - spline.nodes[j].y]) } poly.cp.push([90, boty]) poly.cp.push([-90, boty]) poly.addOutline() if (addMountainHatching && i > 0) { let angle = Math.PI * 2 - Math.PI / 8 poly.addHatching(angle, map(i, 1, 10, 3, 0.5)) } for (let j = 0; j < splinePolys.length; j++) { poly.boolean(splinePolys[j], true) } poly.dp = poly.dp.filter(line => !(Math.abs(line.p1[1] - boty) < 0.01 || Math.abs(line.p2[1] - boty) < 0.01)) poly.draw(turtle) splinePolys.push(poly) } function renderTree(i) { let x = map(i, 0, 10, -60, 60) let y = 30 let spline = new Bezier() let height = 15 + Math.floor(map(Math.random(), 0, 1, 0, 5)) let trunkHeight = 3 + Math.random() * 3 for (let j = 0; j < height; j++) { let xvar = map(Math.random(), 0, 1, 0.2, 0.75) * ((i + j) % 2 ? 1 : 2) * (j < trunkHeight ? 0 : j > height - 3 ? 0 : height - 3 - (j - 4) / 2) * 1 spline.addWayPoint(new Vec2(xvar, y - j * 4, 0)) } const poly = new Polygon() for (let j = 0; j < spline.nodes.length; j++) { poly.cp.push([x - 1 - spline.nodes[j].x, spline.nodes[j].y]) } for (let j = 0; j < spline.nodes.length; j++) { poly.cp.push([x + 1 + spline.nodes[spline.nodes.length - 1 - j].x, spline.nodes[spline.nodes.length - 1 - j].y]) } poly.addOutline() if (addTreeHatching) { poly.addHatching(Math.random(), map(Math.random(), 0, 1, 0.75, 1.5)) } for (let j = 0; j < treePolys.length; j++) { poly.boolean(treePolys[j], true) } poly.draw(turtle) treePolys.push(poly) renderReflection(i, height, trunkHeight) } function renderReflection(i, height, trunkHeight) { let x = map(i, 0, 10, -60, 60) let y = 40 let k = i //Math.random() * 2 let spline = new Bezier() for (let j = 0; j < height; j++) { let xvar = Math.random() * ((k + j) % 2 ? -1 : 1) * (j < trunkHeight ? 0.5 : 2) * 2 spline.addWayPoint(new Vec2(xvar, y + j * 2.5, 0)) } const poly = new Polygon() for (let j = 0; j < spline.nodes.length; j++) { poly.cp.push([x + spline.nodes[j].x, spline.nodes[j].y]) } poly.addOutline() poly.dp.length = poly.dp.length - 1 poly.draw(turtle) }