ecademy.agnesscott.e…an/symbinarytree.htm
#lsystem #fractal
Log in to post a comment.
// Using base L-System implementation from reinder // Global code will be evaluated once. Canvas.setpenopacity(1); const turtle = new Turtle(0,110); let distance = 98; let angle = 37.5; let curving = 0.56; // l-system function createLSystem(numIters, axiom) { let s = axiom; for (let i=0; i<numIters; i++) { s = processString(s); } return s; } function processString(oldStr) { let newstr = ""; for (let i=0; i<oldStr.length; i++) { newstr += applyRules(oldStr[i]); } return newstr; } function applyRules(ch) { switch (ch) { case "F": return "F[-F][+F]"; default: return ch; } } let data = []; const saveP = (x, y, a) => data.push({x, y, a}); const loadP = () => data.pop(); turtle.setheading(270); const inst = createLSystem(13, "F"); // number of iterations and axiom // The walk function will be called until it returns false. function walk(i) { const cmd = inst[i]; switch (cmd) { case "F": turtle.forward(distance); break; case "-": turtle.right(angle); break; case "+": turtle.left(angle); break; case "[": data.push(turtle.x()) data.push(turtle.y()) data.push(turtle.heading()); distance *= curving; break; case "]": turtle.setheading(data.pop()); turtle.penup(); turtle.sety(data.pop()); turtle.setx(data.pop()); turtle.pendown(); distance /= curving; break; default: } return i < inst.length - 1; }