3D cubes test
using reinder's occlusion code parts from "Cubic space division #2"
Log in to post a comment.
// Forked from "cubes" by ge1doot // https://turtletoy.net/turtle/c2cf454d80 // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(0.66); // Global code will be evaluated once. const turtle = new Turtle(); turtle.penup(); const polygons = Polygons(); const cubes = []; const Point = class { constructor (x, y, z) { this.x = x; this.y = y; this.z = z; this.xp = 0; this.yp = 0; } project (angle) { const x = this.x; const y = this.y; const z = this.z; const xy = angle.cx * y - angle.sx * z; const xz = angle.sx * y + angle.cx * z; const yz = angle.cy * xz - angle.sy * x; const yx = angle.sy * xz + angle.cy * x; const size = 0.55 //min=0.3 max=1 step=0.1 const scale = size * fov / (fov + yz) //min=0.4 max=0.9 step=0.1 this.xp = yx * scale; this.yp = xy * scale; return yz; } }; const Face = class { constructor (p0, p1, p2, p3) { this.p0 = p0; this.p1 = p1; this.p2 = p2; this.p3 = p3; } project(angle) { this.p0.project(angle); this.p1.project(angle); this.p2.project(angle); this.p3.project(angle); } draw() { if (((this.p1.yp - this.p0.yp) / (this.p1.xp - this.p0.xp) < (this.p2.yp - this.p0.yp) / (this.p2.xp - this.p0.xp) ^ this.p0.xp < this.p1.xp == this.p0.xp > this.p2.xp)) { const p = polygons.create(); p.addPoints( [this.p0.xp, this.p0.yp], [this.p1.xp, this.p1.yp], [this.p2.xp, this.p2.yp], [this.p3.xp, this.p3.yp] ); p.addOutline(0); polygons.draw(turtle, p); } } }; const Cube = class { constructor (x, y, z, w, h, p) { p /= 2; w /= 2; h /= 2; this.z = 0; this.points = [ new Point(x - w, y - h, z - p), new Point(x + w, y - h, z - p), new Point(x + w, y + h, z - p), new Point(x - w, y + h, z - p), new Point(x - w, y - h, z + p), new Point(x + w, y - h, z + p), new Point(x + w, y + h, z + p), new Point(x - w, y + h, z + p) ]; const c = this.points; this.faces = [ new Face(c[0], c[1], c[2], c[3]), new Face(c[0], c[4], c[5], c[1]), new Face(c[3], c[2], c[6], c[7]), new Face(c[0], c[3], c[7], c[4]), new Face(c[1], c[5], c[6], c[2]), new Face(c[5], c[4], c[7], c[6]) ]; cubes.push(this); } project (angle) { this.z = 0; for (const p of this.points) this.z += p.project(angle); } draw() { for (const f of this.faces) f.draw(); } }; const fov = 300; const rx = 2 * Math.random() - 1; const ry = 2 * Math.random() - 1; const angle = { cx: Math.cos(rx), sx: Math.sin(rx), cy: Math.cos(ry), sy: Math.sin(ry) }; for (let x = - 4; x <= 4; x++) { for (let y = - 4; y <= 4; y++) { for (let z = - 4; z <= 4; z++) { new Cube(x * 20, y * 20, z * 20, 15, 15, 15); } } } for (let c of cubes) c.project(angle); cubes.sort((a, b) => a.z - b.z); for (let c of cubes) c.draw(); //////////////////////////////////////////////////////////////// // reinder's occlusion code parts from "Cubic space division #2" // AABB optimized version by @ge1doot //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const linesDrawn = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d line to draw this.aabb = []; // AABB bounding box } addPoints(...points) { for (let i = 0; i < points.length; i++) this.cp.push(points[i]); this.aabb = this.AABB(); } addSegments(...points) { for (let i = 0; i < points.length; i++) this.dp.push(points[i]); } addOutline(s = 0) { for (let i = s, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } createPoly(x, y, c, r, a) { this.cp.length = 0; for (let i = 0; i < c; i++) { this.cp.push([ x + Math.sin(i * Math.PI * 2 / c + a) * r, y + Math.cos(i * Math.PI * 2 / c + a) * r ]); } this.aabb = this.AABB(); } draw(t) { if (this.dp.length === 0) return; for (let i = 0, l = this.dp.length; i < l; i+=2) { const d0 = this.dp[i]; const d1 = this.dp[i + 1]; const line_hash = Math.min(d0[0], d1[0]).toFixed(2) + "-" + Math.max(d0[0], d1[0]).toFixed(2) + "-" + Math.min(d0[1], d1[1]).toFixed(2) + "-" + Math.max(d0[1], d1[1]).toFixed(2); if (!linesDrawn[line_hash]) { t.penup(); t.goto(d0); t.pendown(); t.goto(d1); linesDrawn[line_hash] = true; } } } AABB() { let xmin = 2000; let xmax = -2000; let ymin = 2000; let ymax = -2000; for (let i = 0, l = this.cp.length; i < l; i++) { const x = this.cp[i][0]; const y = this.cp[i][1]; if (x < xmin) xmin = x; if (x > xmax) xmax = x; if (y < ymin) ymin = y; if (y > ymax) ymax = y; } // Bounding box: center x, center y, half w, half h return [ (xmin + xmax) * 0.5, (ymin + ymax) * 0.5, (xmax - xmin) * 0.5, (ymax - ymin) * 0.5 ]; } addHatching(a, d) { const tp = new Polygon(); tp.cp.push( [this.aabb[0] - this.aabb[2], this.aabb[1] - this.aabb[3]], [this.aabb[0] + this.aabb[2], this.aabb[1] - this.aabb[3]], [this.aabb[0] + this.aabb[2], this.aabb[1] + this.aabb[3]], [this.aabb[0] - this.aabb[2], this.aabb[1] + this.aabb[3]] ); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); for (let i = 0, l = tp.dp.length; i < l; i++) this.dp.push(tp.dp[i]); } inside(p) { // find number of i ntersection points from p to far away // if even your outside const p1 = [0.1, -1000]; let int = 0; for (let i = 0, l = this.cp.length; i < l; i++) { if ( this.vec2_find_segment_intersect( p, p1, this.cp[i], this.cp[(i + 1) % l] ) !== false ) { int++; } } return int & 1; } boolean(p, diff = true) { // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.vec2_find_segment_intersect( ls0, ls1, p.cp[j], p.cp[(j + 1) % cl] ); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; for (let i = 0, len = int.length; i < len; i++) { let j = i; const item = int[j]; for ( const db = (item[0] - ls0[0]) * cmpx + (item[1] - ls0[1]) * cmpy; j > 0 && (int[j - 1][0] - ls0[0]) * cmpx + (int[j - 1][1] - ls0[1]) * cmpy < db; j-- ) int[j] = int[j - 1]; int[j] = item; } for (let j = 0; j < int.length - 1; j++) { if ( (int[j][0] - int[j + 1][0]) ** 2 + (int[j][1] - int[j + 1][1]) ** 2 >= 0.01 ) { if ( diff === !p.inside([ (int[j][0] + int[j + 1][0]) / 2, (int[j][1] + int[j + 1][1]) / 2 ]) ) { ndp.push(int[j], int[j + 1]); } } } } } this.dp = ndp; return this.dp.length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs vec2_find_segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [ l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1]) ]; } return false; } }; return { list() { return polygonList; }, create() { return new Polygon(); }, draw(turtle, p) { let vis = true; for (let j = 0; j < polygonList.length; j++) { const p1 = polygonList[j]; // AABB overlapping test - still O(N2) but very fast if ( Math.abs(p1.aabb[0] - p.aabb[0]) - (p.aabb[2] + p1.aabb[2]) < 0 && Math.abs(p1.aabb[1] - p.aabb[1]) - (p.aabb[3] + p1.aabb[3]) < 0 ) { if (p.boolean(p1) === false) { vis = false; break; } } } if (vis) { p.draw(turtle); polygonList.push(p); } } }; }