### Turtle Dungeon

A small and simple Dungeon generator. The algorithm used to generate the structure is far from perfect: you will find a lot of hidden (=not connected) rooms.

Better procedural dungeons can be found here: watabou.itch.io/one-page-dungeon

Change the seed-value for other randomly generated dungeons.

#procedural #hatching

```// Forked from "Turtle Dungeon" by reinder
// https://turtletoy.net/turtle/40c9efd210

// Turtle Dungeon. Created by Reinder Nijhoff 2019 - @reindernijhoff
//
// https://turtletoy.net/turtle/40c9efd210
//

const cols = 15;
const rows = 12;

let seed = 122; // min=1, max=500, step=1

const gridScale = 190/(1+Math.max(cols, rows));
const maxDepth = 4;

const angle = .01*(Math.random()-.5);
const turtle = new Tortoise()
const turtl2 = new Tortoise()

const disc = new PoissonDisc([[0,0]], hatchRadius);
const grid = [], columns = [], circles = [];
const polygons = new Polygons();

const doorTop = [[0,0],[1/3,0],[1/3,1/6],[2/3,1/6],[2/3,0], [.99,0]];
const doorBtm = [[.99,.99],[2/3,1],[2/3,5/6],[1/3,5/6],[1/3,.99], [0,.99]];
const doorIns = [[4/9,1/6],[4/9,5/6],[5/9,5/6], [5/9,1/6]];

genDungeonGrid();

drawColumns();
drawFloor();
drawCircles();
drawTitle();

function walk(i) {
const x = (i % cols)|0, y = (i / cols)|0;

tile(turtle, x, y);
tile(turtl2, x, y);

const points = disc.addPoints(1, 32, 0, 1);
const r = .9 + .2*Math.random();

return i < maxGrowIterations;
}

function drawColumns() {
const w = .1;
columns.forEach( column => {
const p = polygons.create(), x=column[0], y=column[1];
polygons.draw(turtle, p);
});
}

function drawCircles() {
circles.forEach(circle => {
turtle.jump(g2w([circle[0],circle[1]-.4]));
turtle.circle(gridScale*.4);
turtle.jump(g2w([circle[0],circle[1]-.3]));
turtle.circle(gridScale*.3);
});
}

function drawFloor() {
for (let x=0; x<cols; x++) {
for (let y=0; y<rows; y++) {
const p = polygons.create();
if (grid[x][y] == 1) {
} else if (gin([x,y]) == 2 && gin([x-1,y]) == 1 && gin([x+1,y]) == 1) {
} else if (gin([x,y]) == 3 && gin([x,y-1]) == 1 && gin([x,y+1]) == 1) {
} else {
grid[x][y]=0;
}
polygons.draw(turtle, p);
}
}
}

function drawTitle() {
const a ="Abandoned,Ancient,Desolate,Cursed,Burning,Feared,Forgotten,Eternal,Misty,Hidden,Gloomy,Decrepit".split(",").sort( () => random()-.5);
const b ="Catacombs,Chambers,Crypt,Dungeon,Labyrinth,Lair,Pit,Cavern,Tomb,Vault,Ruins".split(",").sort( () => random()-.5);
const c ="Turtle,Tortoise,Chelonian,Cooter,Leatherback,Loggerhead,Slowpoke,Terrapin,Testudinal".split(",").sort( () => random()-.5);
let title = "The ";
if (random() > .5) {
title += (random() > .5 ? a.shift()+" ":"")+b.shift()+" of the " +  (random() > .5 ? a.shift()+" ":"") + c.shift();
} else {
title += (random() > .5 ? a.shift()+" ":"")+c.shift()+"'s " +  (random() > .5 ? a.shift()+" ":"") + b.shift();
}
const text = new Text();
const turtle = new Tortoise().addTransform(new Sketch(2.39996));

// hack to measure width of title
turtle.jump([0, 200]);
text.print(turtle, "~ " + title + " ~", .2);

turtle.jump([-turtle.x()/2, 87]);
text.print(turtle, "~ " + title + " ~", .2);
}

function tile(t, x, y) {
const type = gin([x,y]);
switch (type) {
case 1: // normal tile
if (!gin([x-1,y])) line(t, g2w([x,y]), g2w([x,y+1]));
if (!gin([x+1,y])) line(t, g2w([x+1,y]), g2w([x+1,y+1]));
if (!gin([x,y-1])) line(t, g2w([x,y]), g2w([x+1,y]));
if (!gin([x,y+1])) line(t, g2w([x,y+1]), g2w([x+1,y+1]));
break;
case 2:
drawLines(t, x, y, doorTop, false);
drawLines(t, x, y, doorBtm, false);
if (random() > .25) drawLines(t, x, y, doorIns, false);
break;
case 3:
drawLines(t, x, y, doorTop, true);
drawLines(t, x, y, doorBtm, true);
if (random() > .25) drawLines(t, x, y, doorIns, true);
break;
}
}

function line(t, p0, p1) {
t.jump(p0);
t.goto(p1);
}

function drawLines(t, x, y, a, f) {
a.forEach( (p, i) => {
if (i > 0 && f)  line(t, g2w(add([x,y], [p[1],p[0]])), g2w(add([x,y], [a[i-1][1], a[i-1][0]])));
});
}

// hatch
function hatch(t, p, n, l, w) {
if (!win(p, l*(2+.75*Math.random()))) return;

const a = Math.random() * 2 * Math.PI;
const c = Math.cos(a), s = Math.sin(a);
const m = Math.max(l, w);

const poly = polygons.create();

for (let i=0; i<n; i++) {
const o = scl([s,-c], (i/(n-1)-.5) * w);
}

polygons.draw(turtle, poly, false);
}

// very, very, hacky dungeon generation code
function genDungeonGrid(vertical=true, depth=0, lt=[0,0], rb=[cols,rows]) {
if (grid.length < cols) {
for (let x=0; x<cols; x++) {
grid[x] = [];
for (let y=0; y<rows; y++) grid[x][y]=0;
}
}
if (rb[0]-lt[0] <= 2 || rb[1]-lt[1] <= 2 || depth >= maxDepth || (depth > 1 && random() < .35)) {

if ((rb[0]-lt[0]) > 1 && (rb[1]-lt[1]) > 1 &&
!(depth >= maxDepth && ((rb[0]-lt[0])*(rb[1]-lt[1]) < 4))) {

if (rb[0]-lt[0] >= 4 && lt[0] == 0 && random() > .5) lt[0]++;
if (rb[0]-lt[0] >= 4 && rb[0] == cols-1 && random() > .5) rb[0]--;

if (rb[1]-lt[1] >= 4 && lt[1] == 0 && random() > .5) lt[1]++;
if (rb[1]-lt[1] >= 4 && rb[1] == rows-1 && random() > .5) rb[1]--;

for (let x=lt[0]; x<rb[0]; x++) {
for (let y=lt[1]; y<rb[1]; y++) {
grid[x][y] = 1;
}
}
// place random doors - clean up later.
if (lt[0] > 0) grid[lt[0]-1][lt[1]+(rb[1]-lt[1])/2|0] = 2;
if (rb[0] < cols-1) grid[rb[0]+1][lt[1]+(rb[1]-lt[1])/2|0] = 2;
if (lt[1] > 0) grid[lt[0]+(rb[0]-lt[0])/2|0][lt[1]-1] = 3;
if (rb[1] < rows-1) grid[lt[0]+(rb[0]-lt[0])/2|0][rb[1]+1] = 3;

const w = rb[0]-lt[0], h = rb[1]-lt[1];
if (w >= 3 && h >= 3 && random() > .5) {
// columns
const type = 1;
for (let x=lt[0]+1; x<rb[0]-1;x++) {
columns.push([x,lt[1]+1,type]);
columns.push([x,rb[1]-1,type]);
}
for (let y=lt[1]+1; y<rb[1];y++) {
columns.push([lt[0]+1,y,type]);
columns.push([rb[0]-1,y,type]);
}
} else if (w == 3 && h == 3 && random() > .5) {
circles.push([lt[0]+w/2, lt[1]+h/2]);
}
}
} else {
let cell1, cell2;
let splitX = lt[0]+2+(rb[0]-lt[0]-5)*random()|0;
let splitY = lt[1]+2+(rb[1]-lt[1]-5)*random()|0;

if (vertical) { // split with vertical wall
cell1 = [[...lt], [splitX, rb[1]]];
cell2 = [[splitX+1, lt[1]], [...rb]];
} else {
cell1 = [[...lt], [rb[0], splitY]];
cell2 = [[lt[0], splitY+1], [...rb]];
}

genDungeonGrid(!vertical, depth+1, cell1[0], cell1[1]);
genDungeonGrid(!vertical, depth+1, cell2[0], cell2[1]);
}
}

// utility functions
function random() {
let r = 1103515245 * (((seed) >> 1) ^ (seed++));
r = 1103515245 * (r ^ (r>>3));
r = r ^ (r >> 16);
return r / 1103515245 % 1;
}

function g2w(p) {
return scl(sub(p, [cols/2, rows/2]), gridScale);
}
function w2g(p) {
}
function gin(g) { // g inside ? (grid space)
if (g[0] < 0 || g[0] >= cols || g[1] < 0 || g[1] >= rows) {
return false;
}
return grid[g[0]][g[1]];
}
function win(p, margin=0) { // p inside? (world space)
if (margin > 0) {
return win([p[0]-margin, p[1]]) || win([p[0]+margin, p[1]]) ||
win([p[0], p[1]-margin]) || win([p[0], p[1]+margin]) ||
}
return gin(w2g(p));
}
function flr(a) { return [Math.floor(a[0]), Math.floor(a[1])]; }
function add(a, b) { return [a[0]+b[0], a[1]+b[1]]; }
function sub(a, b) { return [a[0]-b[0], a[1]-b[1]]; }
function scl(a, b) { return [a[0]*b, a[1]*b]; }
function mxx(a, b) { return [Math.max(a[0],b[0]), Math.max(a[1],b[1])]; }
function mnn(a, b) { return [Math.min(a[0],b[1]), Math.min(a[1],b[1])]; }
function lrp(a, b, t) { return add(a, scl(sub(b, a),t)); }

////////////////////////////////////////////////////////////////
// Poisson-Disc utility code. Created by Reinder Nijhoff 2019
// https://turtletoy.net/turtle/b5510898dc
////////////////////////////////////////////////////////////////

class PoissonDiscGrid {
this.cells = [];
sp.forEach( p => this.insert(p) );
}
insert(p) {
const x = p[0]*this.cellSize|0, y=p[1]*this.cellSize|0;
for (let xi = x-1; xi<=x+1; xi++) {
for (let yi = y-1; yi<=y+1; yi++) {
const ps = this.cell(xi,yi);
for (let i=0; i<ps.length; i++) {
if ((ps[i][0]-p[0])**2 + (ps[i][1]-p[1])**2 < this.radius2) {
return false;
}
}
}
}
this.cell(x, y).push(p);
return true;
}
cell(x,y) {
const c = this.cells;
return (c[x]?c[x]:c[x]=[])[y]?c[x][y]:c[x][y]=[];
}
}
class PoissonDisc {
this.result = [...sp];
this.active = [...sp];
}
mainLoop: while (this.active.length > 0 && count > 0) {
const index = (Math.random() * this.active.length * randomGrowOrder) | 0;
const point = this.active[index];
for (let i=0; i < maxTries; i++) {
const a = Math.random() * 2 * Math.PI;
const d = (Math.random()*loosePacking + 1) * radius;
const p = [point[0] + Math.cos(a)*d, point[1] + Math.sin(a)*d, point];
if (this.grid.insert(p)) {
this.result.push(p);
this.active.push(p);
count--;
continue mainLoop;
}
}
this.active.splice(index, 1);
}
return this.result;
}
}
}

////////////////////////////////////////////////////////////////
// Polygon Clipping utility code - Created by Reinder Nijhoff 2019
// https://turtletoy.net/turtle/a5befa1f8d
////////////////////////////////////////////////////////////////

function Polygons() {
const polygonList = [];
const Polygon = class {
constructor() {
this.cp = [];       // clip path: array of [x,y] pairs
this.dp = [];       // 2d lines [x0,y0],[x1,y1] to draw
this.aabb = [];     // AABB bounding box
}
// add point to clip path and update bounding box
let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5;
(this.cp = [...this.cp, ...points]).forEach( p => {
xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]);
ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]);
});
this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2];
}
// add segments (each a pair of points)
points.forEach(p => this.dp.push(p));
}
for (let i = 0, l = this.cp.length; i < l; i++) {
this.dp.push(this.cp[i], this.cp[(i + 1) % l]);
}
}
draw(t) {
for (let i = 0, l = this.dp.length; i < l; i+=2) {
t.jump(this.dp[i]), t.goto(this.dp[i + 1]);
}
}
const tp = new Polygon();
tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);
const dx = Math.sin(a) * d,   dy = Math.cos(a) * d;
const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200;
for (let i = 0.5; i < 150 / d; i++) {
tp.dp.push([dx * i + cy,   dy * i - cx], [dx * i - cy,   dy * i + cx]);
tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]);
}
tp.boolean(this, false);
this.dp = [...this.dp, ...tp.dp];
}
inside(p) {
let int = 0; // find number of i ntersection points from p to far away
for (let i = 0, l = this.cp.length; i < l; i++) {
if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) {
int++;
}
}
return int & 1; // if even your outside
}
boolean(p, diff = true) {
// bouding box optimization by ge1doot.
if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 &&
Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0;

// polygon diff algorithm (narrow phase)
const ndp = [];
for (let i = 0, l = this.dp.length; i < l; i+=2) {
const ls0 = this.dp[i];
const ls1 = this.dp[i + 1];
// find all intersections with clip path
const int = [];
for (let j = 0, cl = p.cp.length; j < cl; j++) {
const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]);
if (pint !== false) {
int.push(pint);
}
}
if (int.length === 0) {
// 0 intersections, inside or outside?
if (diff === !p.inside(ls0)) {
ndp.push(ls0, ls1);
}
} else {
int.push(ls0, ls1);
// order intersection points on line ls.p1 to ls.p2
const cmpx = ls1[0] - ls0[0];
const cmpy = ls1[1] - ls0[1];
int.sort( (a,b) =>  (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy -
(b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy);

for (let j = 0; j < int.length - 1; j++) {
if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) {
if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) {
ndp.push(int[j], int[j+1]);
}
}
}
}
}
return (this.dp = ndp).length > 0;
}
//port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs
segment_intersect(l1p1, l1p2, l2p1, l2p2) {
const d   = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]);
if (d === 0) return false;
const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]);
const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]);
const ua = n_a / d;
const ub = n_b / d;
if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) {
return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])];
}
return false;
}
};
return {
list: () => polygonList,
create: () => new Polygon(),
draw: (turtle, p, addToVisList=true) => {
for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++);
p.draw(turtle);
}
};
}

////////////////////////////////////////////////////////////////
// Tortoise utility code. Created by Reinder Nijhoff 2019
// https://turtletoy.net/turtle/102cbd7c4d
////////////////////////////////////////////////////////////////

function Rotate(a) { return p => [p[0]*Math.cos(a)+p[1]*Math.sin(a), p[1]*Math.cos(a)-p[0]*Math.sin(a)]; }
function Sketch(a) { return (p) => {
const c0 = [p[0]+Math.cos(p[1]*2+a)*.04, p[1]+Math.cos(p[0]*2.1+a)*.04];
const c1 = [c0[0]+Math.cos(c0[1]*9+a)*.02, c0[1]+Math.cos(c0[0]*9.1+a)*.02];
return c1;
}
}

function Tortoise(x, y) {
class Tortoise extends Turtle {
constructor(x, y) {
super(x, y);
this.ps = Array.isArray(x) ? [...x] : [x || 0, y || 0];
this.transforms = [];
}
this.transforms.push(t);
this.jump(this.ps);
return this;
}
applyTransforms(p) {
if (!this.transforms) return p;
let pt = [...p];
this.transforms.map(t => { pt = t(pt); });
return pt;
}
goto(x, y) {
const p = Array.isArray(x) ? [...x] : [x, y];
const pt = this.applyTransforms(p);
if (this.isdown() && (this.pt[0]-pt[0])**2 + (this.pt[1]-pt[1])**2 > 4) {
this.goto((this.ps[0]+p[0])/2, (this.ps[1]+p[1])/2);
this.goto(p);
} else {
super.goto(pt);
this.ps = p;
this.pt = pt;
}
}
position() { return this.ps; }
}
return new Tortoise(x,y);
}

////////////////////////////////////////////////////////////////
// Text utility code. Created by Reinder Nijhoff 2019
// https://turtletoy.net/turtle/1713ddbe99
////////////////////////////////////////////////////////////////

function Text() {
class Text {
print (t, str, scale) {
let pos = [t.x(), t.y()], h = t.h(), o = pos;
str.split('').map(c => {
const i = c.charCodeAt(0) - 32;
if (i < 0 ) {
pos = o = this.rotAdd([0, 48*scale], o, h);
} else if (i > 96 ) {
pos = this.rotAdd([16*scale, 0], o, h);
} else {
const d = dat[i], lt = d[0]*scale, rt = d[1]*scale, paths = d[2];
paths.map( p => {
t.up();
p.map( s=> {
t.goto(this.rotAdd([s[0]*scale - lt, s[1]*scale], pos, h));
t.down();
});
});
pos = this.rotAdd([rt - lt, 0], pos, h);
}
});
}
return [Math.cos(h)*a[0] - Math.sin(h)*a[1] + b[0],
Math.cos(h)*a[1] + Math.sin(h)*a[0] + b[1]];
}
}

const dat = ('br>eoj^jl<jqirjskrjq>brf^fe<n^ne>`ukZdz<qZjz<dgrg<cmqm>`thZhw<lZlw<qao_l^h^e_caccdeefg'+
'gmiojpkqmqporlshsercp>^vs^as<f^h`hbgdeeceacaab_d^f^h_k`n`q_s^<olmmlolqnspsrrspsnqlol>]wtgtfsereqfph'+
'nmlpjrhsdsbraq`o`makbjifjekckaj_h^f_eaecffhimporqssstrtq>eoj`i_j^k_kajcid>cqnZl\\j_hcghglhqjulxnz>c'+
'qfZh\\j_lcmhmllqjuhxfz>brjdjp<egom<ogem>]wjajs<ajsj>fnkojpiojnkokqis>]wajsj>fnjniojpkojn>_usZaz>`ti'+
'^f_dbcgcjdofrisksnrpoqjqgpbn_k^i^>`tfbhak^ks>`tdcdbe`f_h^l^n_o`pbpdofmicsqs>`te^p^jfmfogphqkqmppnrk'+
'shserdqco>`tm^clrl<m^ms>`to^e^dgefhekenfphqkqmppnrkshserdqco>`tpao_l^j^g_ebdgdlepgrjsksnrppqmqlping'+
'hcecddaf_i^j^m_oapepjoomrjshserdp>fnjgihjikhjg<jniojpkojn>fnjgihjikhjg<kojpiojnkokqis>^vrabjrs>]wag'+
'sg<amsm>^vbarjbs>asdcdbe`f_h^l^n_o`pbpdofngjijl<jqirjskrjq>]xofndlcicgdfeehekfmhnknmmnk<icgefhfkgmh'+
'q^qs<chqh>fnj^js>brn^nnmqlrjshsfreqdndl>_tc^cs<q^cl<hgqs>`qd^ds<dsps>^vb^bs<b^js<r^js<r^rs>_uc^cs<c'+
'^qs<q^qs>_uh^f_daccbfbkcndpfrhslsnrppqnrkrfqcpan_l^h^>_tc^cs<c^l^o_p`qbqepgohlici>_uh^f_daccbfbkcnd'+
'pfrhslsnrppqnrkrfqcpan_l^h^<koqu>_tc^cs<c^l^o_p`qbqdpfoglhch<jhqs>`tqao_l^h^e_caccdeefggmiojpkqmqpo'+
'rlshsercp>brj^js<c^q^>_uc^cmdpfrisksnrppqmq^>asb^js<r^js>^v`^es<j^es<j^os<t^os>`tc^qs<q^cs>asb^jhjs'+
'<r^jh>`tq^cs<c^q^<csqs>cqgZgz<hZhz<gZnZ<gznz>cqc^qv>cqlZlz<mZmz<fZmZ<fzmz>brj\\bj<j\\rj>asazsz>fnkc'+
'ieigjhkgjfig>atpeps<phnfleiegfehdkdmepgrislsnrpp>`sd^ds<dhffhekemfohpkpmopmrkshsfrdp>asphnfleiegfeh'+
'dkdmepgrislsnrpp>atp^ps<phnfleiegfehdkdmepgrislsnrpp>asdkpkpiognfleiegfehdkdmepgrislsnrpp>eqo^m^k_j'+
'bjs<gene>atpepuoxnylzizgy<phnfleiegfehdkdmepgrislsnrpp>ate^es<eihfjemeofpips>fni^j_k^j]i^<jejs>eoj^'+
'k_l^k]j^<kekvjyhzfz>are^es<oeeo<ikps>fnj^js>[y_e_s<_ibfdegeifjijs<jimfoeretfuius>ateees<eihfjemeofp'+
'ips>atiegfehdkdmepgrislsnrppqmqkphnfleie>`sdedz<dhffhekemfohpkpmopmrkshsfrdp>atpepz<phnfleiegfehdkd'+
'mepgrislsnrpp>cpgegs<gkhhjfleoe>bsphofleieffehfjhkmlompopporlsisfrep>eqj^jokrmsos<gene>ateeeofrhsks'+
'mrpo<peps>brdejs<pejs>_ubefs<jefs<jens<rens>bseeps<pees>brdejs<pejshwfydzcz>bspees<eepe<esps>cqlZj['+
'i\\h^h`ibjckekgii<j[i]i_jakbldlfkhgjkllnlpkrjsiuiwjy<ikkmkojqirhthvixjylz>fnjZjz>cqhZj[k\\l^l`kbjci'+
'eigki<j[k]k_jaibhdhfihmjilhnhpirjskukwjy<kkimiojqkrltlvkxjyhz>^vamakbhdgfghhlknlplrksi<akbidhfhhill'+
'nmpmrlsisg>brb^bscsc^d^dsese^f^fsgsg^h^hsisi^j^jsksk^l^lsmsm^n^nsoso^p^psqsq^r^rs').split('>').map(
r=> { return [r.charCodeAt(0)-106,r.charCodeAt(1)-106, r.substr(2).split('<').map(a => {const ret
= []; for (let i=0; i<a.length; i+=2) {ret.push(a.substr(i, 2).split('').map(b => b.charCodeAt(0)
-106));} return ret; })]; });

return new Text();
}```