Draw a path for a fireworks trail.
Or maybe palms? Or dandelions?
Log in to post a comment.
// Forked from "Path input type" by reinder // https://turtletoy.net/turtle/46adb0ad70 Canvas.setpenopacity(-0.35); const numTrails = 500; //min=5,max=1000,step=1 const maxTrailLength = 70; //min=1,max=100,step=0.1 const force = 10; //min=0,max=20,step=0.1 const gravity = 1.2; //min=-1,max=4,step=0.1 const inertia = 0.02; //min=0,max=0.2,step=0.001 const pathInput = `M-60,90 C-60,59 -38,3 -28,-28`; // type=path const path = Path(pathInput); const turtle = new Turtle(); turtle.jump(path.p(0)); function walk(i) { const steps = path.length() | 0; const pos = path.p( i/steps ); turtle.goto(pos); if (i == steps - 1) { circle(turtle, force**1.2); spawnBurst([pos[0], pos[1]], [pos[2], pos[3]]); } return i < steps; } let toggle = 0; function spawnBurst(point, derivative) { const t = new Turtle(); for (let b = 0; b < numTrails; b++) { t.jump(point); const l = maxTrailLength * (1.0 - Math.random() * 0.5); const a = Math.random() * 360; let p = point; let d = l; let v = scale([Math.cos(a), Math.sin(a)], force); v = add(v, scale(derivative, inertia)); while (d > 0) { const vl = length(v); d -= vl; if (d < 0) v = scale(v, (-d/vl)); p = add(p, v); t.goto(p); v[1] += gravity; } circle(t, 0.2); } } //////////////////////////////////////////////////////////////// // Path utility code. Created by Reinder Nijhoff 2023 // Parses a single SVG path (only M, C and L statements are // supported). The p-method will return // [...position, ...derivative] for a normalized point t. // // https://turtletoy.net/turtle/46adb0ad70 //////////////////////////////////////////////////////////////// function Path(svg) { class MoveTo { constructor(p) { this.p0 = p; } p(t, s) { return [...this.p0, 1, 0]; } length() { return 0; } } class LineTo { constructor(p0, p1) { this.p0 = p0, this.p1 = p1; } p(t, s = 1) { const nt = 1 - t, p0 = this.p0, p1 = this.p1; return [ nt*p0[0] + t*p1[0], nt*p0[1] + t*p1[1], (p1[0] - p0[0]) * s, (p1[1] - p0[1]) * s, ]; } length() { const p0 = this.p0, p1 = this.p1; return Math.hypot(p0[0]-p1[0], p0[1]-p1[1]); } } class BezierTo { constructor(p0, c0, c1, p1) { this.p0 = p0, this.c0 = c0, this.c1 = c1, this.p1 = p1; } p(t, s = 1) { const nt = 1 - t, p0 = this.p0, c0 = this.c0, c1 = this.c1, p1 = this.p1; return [ nt*nt*nt*p0[0] + 3*t*nt*nt*c0[0] + 3*t*t*nt*c1[0] + t*t*t*p1[0], nt*nt*nt*p0[1] + 3*t*nt*nt*c0[1] + 3*t*t*nt*c1[1] + t*t*t*p1[1], (3*nt*nt*(c0[0]-p0[0]) + 6*t*nt*(c1[0]-c0[0]) + 3*t*t*(p1[0]-c1[0])) * s, (3*nt*nt*(c0[1]-p0[1]) + 6*t*nt*(c1[1]-c0[1]) + 3*t*t*(p1[1]-c1[1])) * s, ]; } length() { return this._length || ( this._length = Array.from({length:25}, (x, i) => this.p(i/25)).reduce( (a,c,i,v) => i > 0 ? a + Math.hypot(c[0]-v[i-1][0], c[1]-v[i-1][1]) : a, 0)); } } class Path { constructor(svg) { this.segments = []; this.parsePath(svg); } parsePath(svg) { const t = svg.match(/([0-9.-]+|[MLC])/g); for (let s, i=0; i<t.length;) { switch (t[i++]) { case 'M': this.add(new MoveTo(s=[t[i++],t[i++]])); break; case 'L': this.add(new LineTo(s, s=[t[i++],t[i++]])); break; case 'C': this.add(new BezierTo(s, [t[i++],t[i++]], [t[i++],t[i++]], s=[t[i++],t[i++]])); break; default: i++; } } } add(segment) { this.segments.push(segment); this._length = 0; } length() { return this._length || (this._length = this.segments.reduce((a,c) => a + c.length(), 0)); } p(t) { t = Math.max(Math.min(t, 1), 0) * this.length(); for (let l=0, i=0, sl=0; i<this.segments.length; i++, l+=sl) { sl = this.segments[i].length(); if (t > l && t <= l + sl) { return this.segments[i].p((t-l)/sl, sl/this.length()); } } return this.segments[Math.min(1, this.segments.length-1)].p(0); } } return new Path(svg); } function circle(turtle, radius) { const pos = turtle.pos(); turtle.penup(); turtle.sety(turtle.ycor() - radius); turtle.pendown(); turtle.circle(radius); turtle.jump(pos); } // vec2 functions function equal(a,b) { return .001>dist_sqr(a,b); } function scale(a,b) { return [a[0]*b,a[1]*b]; } function add(a,b) { return [a[0]+b[0],a[1]+b[1]]; } function sub(a,b) { return [a[0]-b[0],a[1]-b[1]]; } function dot(a,b) { return a[0]*b[0]+a[1]*b[1]; } function dist_sqr(a,b) { return (a[0]-b[0])*(a[0]-b[0])+(a[1]-b[1])*(a[1]-b[1]); } function dist(a,b) { return Math.sqrt(dist_sqr(a,b)); } function length(a) { return Math.sqrt(dot(a,a)); } function segment_intersect(a,b,d,c) { const e=(c[1]-d[1])*(b[0]-a[0])-(c[0]-d[0])*(b[1]-a[1]); if(0==e)return false; c=((c[0]-d[0])*(a[1]-d[1])-(c[1]-d[1])*(a[0]-d[0]))/e; d=((b[0]-a[0])*(a[1]-d[1])-(b[1]-a[1])*(a[0]-d[0]))/e; return 0<=c&&1>=c&&0<=d&&1>=d?[a[0]+c*(b[0]-a[0]),a[1]+c*(b[1]-a[1])]:false; }