A night of poker ♠️

A toroidal table view (except for hatching).

Wait for a while to make the screensaver kick in or click the eye icon on the bottom-left of this description.

Log in to post a comment.

const nrOfDecks = 2; //min=1 max=4 step=1
const hatchScale = 1; //min=.2 max=5 step=.01

// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(1);

loadEnum();
loadCardGames();
turtlelib_init();

R.seedRandom();

const turtle = new Turtle();
const polygons = new Polygons();

const predeck = Deck.standard();

const deck = Deck.standard();
for(let i = 0; i < nrOfDecks - 1; i++) {
    while(card = predeck.getTop()) {
        deck.add(card.clone());
    }
    predeck.reset();
}

deck.shuffle();

function walk(i) {
    //const logoWriter = new Text(getFont('EMSMistyNight'));

    //centerPlotAt(turtle, logoWriter.getPts(turtle, 'blackjack', 2), [0, -80]);


    const card = deck.getTop();
    
    card.faceUp = Math.random() < .8;
    
    const cardPos = getPos(Math.random()**.7, Math.random() * 2 * Math.PI);
    const cardAngle = R.getAngle();
    [[-1, -1],[0, -1],[1, -1],[-1,  0],[0,  0],[1,  0],[-1,  1],[0,  1],[1,  1]].forEach((pt => {
        card.draw(turtle, V.add(cardPos, V.scale(pt, 200)), 13, 20, cardAngle);
    }));
    
    const chipPos = getPos((Math.random()*1.5)**.7, Math.random() * 2 * Math.PI);
    const chipAngle = R.getAngle();
    const hatching = Math.random() * 5 | 0;
    [[-1, -1],[0, -1],[1, -1],[-1,  0],[0,  0],[1,  0],[-1,  1],[0,  1],[1,  1]].forEach((pt => {
        chip(turtle, polygons, 4.5, V.add(chipPos, V.scale(pt, 200)), hatching, 4 + 7 * Math.random() | 0, chipAngle);
    }));
    
    return deck.size > 0;
}

const getPos = (r, theta) => [r * 145 * Math.sin(theta), r * 145 * Math.cos(theta)];

function centerPlotAt(turtle, paths, pos = [0, 0]) {
    const bb = pathsBB(paths);
    const centerCorrection = [
        -(bb[1][0] - bb[0][0]) / 2 - bb[0][0],
        -bb[1][1] + (bb[1][1] - bb[0][1]) / 2
    ];
    
    paths.forEach(path => PT.draw(turtle, path.map(pt => V.add(V.add(pt, centerCorrection), pos))));
}

function pathsBB(paths) {
    return paths.map(path => pathBB(path)).reduce((a, c) => [
        [Math.min(a[0][0], c[0][0]), Math.min(a[0][1], c[0][1])],
        [Math.max(a[1][0], c[1][0]), Math.max(a[1][1], c[1][1])]
    ], [
        [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER],
        [Number.MIN_SAFE_INTEGER, Number.MIN_SAFE_INTEGER]
    ]);
}
function pathBB(path) {
    return path.reduce((a, c) => [
        [Math.min(a[0][0], c[0]), Math.min(a[0][1], c[1])],
        [Math.max(a[1][0], c[0]), Math.max(a[1][1], c[1])]
    ], [
        [Number.MAX_SAFE_INTEGER, Number.MAX_SAFE_INTEGER],
        [Number.MIN_SAFE_INTEGER, Number.MIN_SAFE_INTEGER]
    ]);
}

function chip(turtle, polygons, r = 5, pos = [-80, 0], hatchIdx = 0, nSegments = 10, rotation = 0) {
    const diamondHatch = 6;
    const hatchSettings = [
        [[], [[1, .15]], [[1, .15]], []],
        [[[1, .15]], [], [], [[1, .15]]],
        [
            [[rotation+1, 1 / (diamondHatch/r)], [rotation-1, 1 / (diamondHatch/r)]], //center
            [], //segments
            [], //ring
            [[1, .15]] // outer ring (with segments)
        ],
        [[[1, .15]], [[1, .15]], [], []],
        [[[rotation+1, 1 / (diamondHatch/r)], [rotation-1, 1 / (diamondHatch/r)]], [[rotation+1, 1 / (diamondHatch/r)], [rotation-1, 1 / (diamondHatch/r)]], [[1, .15]], []],
    ];

    const segmentPts = [
        ...PT.arc(.8 * r, Math.PI / nSegments, 0, (.8 * r * 7 / nSegments) | 0, true),
        ...PT.arc(     r, Math.PI / nSegments, 0, (r * 7 / nSegments) | 0, true).reverse()
    ];

    for(let i = 0; i < nSegments; i++) {
        const seg = polygons.create();
        seg.addPoints(...segmentPts.map(pt => V.trans(V.rot2d(rotation+i * 2 * Math.PI / nSegments), pt)).map(pt => V.add(pt, pos)));
        hatchSettings[hatchIdx][1].forEach(h => seg.addHatching(h[0], hatchScale * h[1]));
        seg.addOutline();
        polygons.draw(turtle, seg);
    }
    
    [
        [.55, hatchSettings[hatchIdx][0]],
        [.7, hatchSettings[hatchIdx][2]],
        [1, hatchSettings[hatchIdx][3]]
    ].forEach(rF => {
        const outer = polygons.create();
        outer.addPoints(...PT.circle(rF[0] * r).map(pt => V.add(pt, pos)));
        rF[1].forEach(h => outer.addHatching(h[0], hatchScale * h[1]));
        outer.addOutline();
        polygons.draw(turtle, outer);
    });
}

function loadCardGames() {
    const cardRanks = [...Array.from({length: 9}, (e, i) => ''+(i+2)), 'J', 'Q', 'K', 'A'];
    const cardFontPaths = [[[[-0.155,-0.137],[-0.155,-0.163],[-0.13,-0.212],[-0.105,-0.237],[-0.055,-0.263],[0.045,-0.263],[0.095,-0.237],[0.12,-0.212],[0.145,-0.163],[0.145,-0.112],[0.12,-0.063],[0.07,0.013],[-0.18,0.263],[0.17,0.263]]],[[[-0.13,-0.263],[0.145,-0.263],[-0.005,-0.063],[0.07,-0.063],[0.12,-0.037],[0.145,-0.012],[0.17,0.063],[0.17,0.113],[0.145,0.188],[0.095,0.238],[0.02,0.263],[-0.055,0.263],[-0.13,0.238],[-0.155,0.213],[-0.18,0.163]]],[[[0.057,-0.263],[-0.193,0.088],[0.183,0.088]],[[0.057,-0.263],[0.057,0.263]]],[[[0.12,-0.263],[-0.13,-0.263],[-0.155,-0.037],[-0.13,-0.063],[-0.055,-0.087],[0.02,-0.087],[0.095,-0.063],[0.145,-0.012],[0.17,0.063],[0.17,0.113],[0.145,0.188],[0.095,0.238],[0.02,0.263],[-0.055,0.263],[-0.13,0.238],[-0.155,0.213],[-0.18,0.163]]],[[[0.145,-0.187],[0.12,-0.237],[0.045,-0.263],[-0.005,-0.263],[-0.08,-0.237],[-0.13,-0.163],[-0.155,-0.037],[-0.155,0.088],[-0.13,0.188],[-0.08,0.238],[-0.005,0.263],[0.02,0.263],[0.095,0.238],[0.145,0.188],[0.17,0.113],[0.17,0.088],[0.145,0.013],[0.095,-0.037],[0.02,-0.063],[-0.005,-0.063],[-0.08,-0.037],[-0.13,0.013],[-0.155,0.088]]],[[[0.17,-0.263],[-0.08,0.263]],[[-0.18,-0.263],[0.17,-0.263]]],[[[-0.055,-0.263],[-0.13,-0.237],[-0.155,-0.187],[-0.155,-0.137],[-0.13,-0.087],[-0.08,-0.063],[0.02,-0.037],[0.095,-0.012],[0.145,0.037],[0.17,0.088],[0.17,0.163],[0.145,0.213],[0.12,0.238],[0.045,0.263],[-0.055,0.263],[-0.13,0.238],[-0.155,0.213],[-0.18,0.163],[-0.18,0.088],[-0.155,0.037],[-0.105,-0.012],[-0.03,-0.037],[0.07,-0.063],[0.12,-0.087],[0.145,-0.137],[0.145,-0.187],[0.12,-0.237],[0.045,-0.263],[-0.055,-0.263]]],[[[0.157,-0.087],[0.133,-0.012],[0.083,0.037],[0.008,0.063],[-0.017,0.063],[-0.092,0.037],[-0.143,-0.012],[-0.167,-0.087],[-0.167,-0.112],[-0.143,-0.187],[-0.092,-0.237],[-0.017,-0.263],[0.008,-0.263],[0.083,-0.237],[0.133,-0.187],[0.157,-0.087],[0.157,0.037],[0.133,0.163],[0.083,0.238],[0.008,0.263],[-0.043,0.263],[-0.117,0.238],[-0.143,0.188]]],[[[-0.355,-0.163],[-0.305,-0.187],[-0.23,-0.263],[-0.23,0.263]],[[0.22,-0.263],[0.145,-0.237],[0.095,-0.163],[0.07,-0.037],[0.07,0.037],[0.095,0.163],[0.145,0.238],[0.22,0.263],[0.27,0.263],[0.345,0.238],[0.395,0.163],[0.42,0.037],[0.42,-0.037],[0.395,-0.163],[0.345,-0.237],[0.27,-0.263],[0.22,-0.263]]],[[[0.107,-0.263],[0.107,0.137],[0.083,0.213],[0.058,0.238],[0.007,0.263],[-0.042,0.263],[-0.093,0.238],[-0.117,0.213],[-0.142,0.137],[-0.142,0.088]]],[[[-0.055,-0.263],[-0.105,-0.237],[-0.155,-0.187],[-0.18,-0.137],[-0.205,-0.063],[-0.205,0.063],[-0.18,0.137],[-0.155,0.188],[-0.105,0.238],[-0.055,0.263],[0.045,0.263],[0.095,0.238],[0.145,0.188],[0.17,0.137],[0.195,0.063],[0.195,-0.063],[0.17,-0.137],[0.145,-0.187],[0.095,-0.237],[0.045,-0.263],[-0.055,-0.263]],[[0.02,0.163],[0.17,0.313]]],[[[-0.168,-0.263],[-0.168,0.263]],[[0.183,-0.263],[-0.168,0.088]],[[-0.043,-0.037],[0.183,0.263]]],[[[-0.03,-0.263],[-0.23,0.263]],[[-0.03,-0.263],[0.17,0.263]],[[-0.155,0.088],[0.095,0.088]]]];;
    const cardSuits = ['Hearts','Diamonds','Clubs','Spades'];
    const cardNames = ['Two', 'Three', 'Four', 'Five', 'Six', 'Seven', 'Eight', 'Nine', 'Ten', 'Jack', 'Queen', 'King', 'Ace'];

    const SUITS = Enum.from(cardSuits);
    const RANKS = Enum.from(cardNames);
    this.SUITS = SUITS;
    this.RANKS = RANKS;
    
    // Fisher-Yates (aka Knuth) Shuffle
    // https://stackoverflow.com/questions/2450954/how-to-randomize-shuffle-a-javascript-array#2450976
    function shuffle(array) {
      let currentIndex = array.length,  randomIndex;
    
      // While there remain elements to shuffle.
      while (currentIndex > 0) {
    
        // Pick a remaining element.
        randomIndex = Math.floor(Math.random() * currentIndex);
        currentIndex--;
    
        // And swap it with the current element.
        [array[currentIndex], array[randomIndex]] = [
          array[randomIndex], array[currentIndex]];
      }
    
      return array;
    }
    
    class Player {
        #chips;
        #hands;
        #bet;
        constructor(chips, bet) {
            this.#chips = chips;
            this.#bet = bet;
        }
        reset() {
            this.#chips -= this.#bet;
            this.#hands = [new Hand(this.#bet)];
        }
        deal(card, handIdx) {
            this.#hands[handIdx].add(card);
        }
        set bet(b) {
            this.#bet = b;
        }
        get bet() {
            return this.#bet;
        }
        set chips(c) {
            this.#chips = c;
        }
        get chips() {
            return this.#chips;
        }
        get handCount() {
            return this.#hands.length;
        }
        getHand(handIdx = 0) {
            return this.#hands[handIdx];
        }
        addHand() {
            this.#chips -= this.#bet;
            this.#hands.push(new Hand(this.#bet));
        }
    }
    
    this.Player = Player;

    class Dealer {
        #hand;
        constructor() {
            this.reset();
        }
        reset() {
            this.#hand = new Hand();
        }
        hit(deck, player, handIdx = 0) {
            if(player === undefined) {
                const dealerCard = deck.getTop();
                dealerCard.faceUp = (this.#hand.size !== 1)
                this.#hand.add(dealerCard);
                return;
            }
            const c = deck.getTop();
            c.faceUp = true;
            player.deal(c, handIdx);
        }
        draw(turtle, location) {
            this.#hand.draw(turtle, location);
        }
        reveal() {
            this.#hand.setFaceUp(1, true);
        }
        getHand() {
            return this.#hand;
        }
        get handCount() {
            return 1;
        }
    }
    
    this.Dealer = Dealer;
    
    class Card {
        #suit = 0;
        #rank = 0;
        #faceUp = false;
        constructor(suit, rank, faceUp = false) {
            this.#suit = suit;
            this.#rank = rank;
            this.#faceUp = faceUp;
        }
        get faceUp() {
            return this.#faceUp;
        }
        set faceUp(val) {
            this.#faceUp = (val == true);
        }
        get rank() {
            return this.#rank;
        }
        get suit() {
            return this.#suit;
        }
        get name() {
            return `${RANKS.key(this.#rank)} of ${SUITS.key(this.#suit)}`;
        }
        draw(turtle, pos, width = 13, height = 20, rotation = 0) {
            const rot = V.rot2d(rotation);
            
            if(this.#faceUp) {
                const suit = getSuitSymbolPts(this.#suit, Math.min(width, height) * .6)
                                    .map(pt => V.trans(rot, V.add(pt, [0, height / 4])));
                
                const rank = cardFontPaths[RANKS.index(this.#rank)].map(path =>
                    path.map(pt => V.scale(pt, Math.min(width, height) * .8))
                        .map(pt => V.trans(rot, V.add(pt, [0, -height / 4])))
                );
                const rankPolygon = polygons.create();
                rank.forEach(path => path.map(pt => V.add(pt, pos)).forEach((e, i, a) => {
                    if(i == a.length - 1) return;
                    rankPolygon.addSegments(e, a[(i+1)%a.length]);
                }));
                polygons.draw(turtle, rankPolygon);
                
                const suitPolygon = polygons.create();
                suitPolygon.addPoints(...suit.map(pt => V.add(pt, pos)));
                suitPolygon.addOutline();
                if(this.#suit & (SUITS.SPADES | SUITS.CLUBS)) {
                    suitPolygon.addHatching(1 + rotation, hatchScale * .15);
                } else {
                    suitPolygon.addHatching(1 + rotation, 1);
                    suitPolygon.addHatching(-1 + rotation, 1);
                }
                polygons.draw(turtle, suitPolygon);
            } else {
                const coverCornerR = .8 * Math.min(width, height) / 6;
                const coverMargin = Math.min(width, height) * .15;
                const coverOutlines = [[1, 1], [-1, 1], [-1, -1], [1, -1]].flatMap((e, i) => 
                    PT.arc(coverCornerR, Math.PI / 2, i*Math.PI/2, (12 * coverCornerR) | 0, true).map(pt => V.add(V.mul(e, [(width-coverMargin)/2 - coverCornerR, (height-coverMargin)/2 - coverCornerR]), pt))            
                ).map(pt => V.trans(rot, pt));
                
                const coverPolygon = polygons.create();
                coverPolygon.addPoints(...coverOutlines.map(pt => V.add(pt, pos)));
                coverPolygon.addHatching(1 + rotation, 2);
                coverPolygon.addHatching(-1 + rotation, 2);
                coverPolygon.addOutline();
                polygons.draw(turtle, coverPolygon);
            }

            const cornerR = Math.min(width, height) / 6;
            const outlines = [[1, 1], [-1, 1], [-1, -1], [1, -1]].flatMap((e, i) => 
                PT.arc(cornerR, Math.PI / 2, i*Math.PI/2, (12 * cornerR) | 0, true).map(pt => V.add(V.mul(e, [width/2 - cornerR, height/2 - cornerR]), pt))            
            ).map(pt => V.trans(rot, pt));
            
            const outlinesPolygon = polygons.create();
            outlinesPolygon.addPoints(...outlines.map(pt => V.add(pt, pos)));
            outlinesPolygon.addOutline();
            polygons.draw(turtle, outlinesPolygon);
        }
        clone() {
            return new Card(this.suit, this.rank, this.faceUp);
        }
        toString() {
            return this.faceUp? this.name: 'Face down';
        }
    }
    this.Card = Card;
    
    class Deck {
        #originalCards = [];
        #deck = [];
        constructor(cards) {
            this.#originalCards = cards;
            this.reset();
        }
        reset() {
            this.#deck = this.#originalCards.map(v => v.clone());
        }
        shuffle() {
            this.#deck = shuffle(this.#deck);
        }
        getTop() {
            return this.#deck.pop();
        }
        get length() {
            return this.#deck.length;
        }
        take(s, r) {
            const card = this.#deck.find(c => c.suit == s && c.rank == r);
            if(card) {
                this.remove(s, r);
            }
            return card;
        }
        remove(s, r) {
            this.#deck = this.#deck.filter(c => !(c.suit == s && c.rank == r));
        }
        add(card) {
            this.#originalCards.push(card);
            this.#deck.push(card);
        }
        peek(n = 0) {
            return this.#deck[this.#deck.length - 1 - n].clone();
        }
        get size() {
            return this.#deck.length;
        }
        static standard(n = 52) { //or 32 for only seven and higher
            if(n != 52 && n != 32) throw new Error(`Only 52 or 32 card decks are supported at the moment`);
            return new Deck(Object.keys(SUITS).flatMap((s, si) => Object.keys(RANKS).map((v, i) => new Card(SUITS[s], RANKS[v]))));
        }
    }
    this.Deck = Deck;
    
    class Hand {
        #cards = [];
        #bet;
        constructor(bet) {
            this.#bet = bet;
        }
        add(card) {
            this.#cards.push(card);
        }
        takeLast() {
            return this.#cards.pop();
        }
        peek() {
            return this.#cards.map(v => v.clone());
        }
        set bet(b) {
            this.#bet = b;
        }
        get bet() {
            return this.#bet;
        }
        get size() {
            return this.#cards.length;
        }
        draw(turtle, position, widthPerCard = 13, height = 20, margin = null, rotation = 0) {
            const rot = V.rot2d(rotation);
            
            margin = margin === null? widthPerCard/13: margin;
            
            this.#cards.forEach((e, i) => {
                e.draw(turtle, V.add(position, V.trans(rot, [(widthPerCard + margin) * i, 0])), widthPerCard, height, rotation);
            })
        }
        setFaceUp(idx, faceUp) {
            this.#cards[idx].faceUp = faceUp;
        }
        toString() {
            return this.#cards.map(c => ''+c).join(', ');
        }
    }
    this.Hand = Hand;
    
    return;

    function getSuitSymbolPts(suit, scale) {
        switch(suit) {
            case SUITS.HEARTS:
                return getHeart(scale);
            case SUITS.DIAMONDS:
                return getDiamond(scale);
            case SUITS.SPADES:
                return getSpade(scale);
            case SUITS.CLUBS:
                return getClub(scale);
        }
    }

    // ========== HEART ==========
    function getHeart(scale) {
        return getHeartPts(scale / 29).map(pt => V.add([0, -scale/12], pt));
    }
    
    // ========== DIAMOND ==========
    function getDiamond(scale) {
        return [
            [0, -1],
            [2/3, 0],
            [0, 1],
            [-2/3, 0],
            [0, -1]
        ].map(pt => V.scale(pt, scale/2));
    }
    
    // ========== CLUB ==========
    function getClub(scale) {
        // Three circles for the clover
        const r = scale / 3.9;
    
        const rawStem = getStemPts(r).map(pt => [pt[0], r + pt[1]]);
    
        const rightClub = getCirclePts(r, -Math.PI/2, 4*Math.PI / 3).map(pt => V.add(pt, V.scale([Math.sin(Math.PI / 3), Math.cos(Math.PI / 3)], r))).filter(pt => rawStem[0][0] < pt[0]);
        
        const stem = rawStem.filter(pt => rightClub[rightClub.length - 1][1] < pt[1]);
        
        return [
            ...getCirclePts(r, -Math.PI/2 - 2*Math.PI / 3, 4*Math.PI / 3).map(pt => [pt[0], pt[1] - r]),         // Top
            ...rightClub,
            ...stem,
            ...rightClub.map(pt => [-pt[0], pt[1]]).reverse()
        ].map(pt => V.add(pt,[0, scale/50]));
    }
    
    // ========== SPADE ==========
    function getSpade(scale) {
        const r = scale / 31;
    
        const rawStem = getStemPts(r*8).map(pt => V.add([0, scale/3.6], pt));
    
        // Spade head (heart flipped vertically)
        const pts = getHeartPts(r*.9).filter(pt => 0 < pt[1] || (pt[0] < -rawStem[0][0] || rawStem[0][0] < pt[0])).map(pt => [pt[0], -pt[1]]).reverse();
        
        const stem = rawStem.filter(pt => pts[0][1] < pt[1]);
        
        return [...pts, ...stem, pts[0]];
    }

    function getCirclePts(r, phase = 0, len = 2 * Math.PI) {
        const pts = [];
        for (let i = 0, max = Math.ceil(r * len); i <= max; i++) {
            const a = len * (i / max);
            pts.push([r * Math.cos(phase + a), r * Math.sin(phase + a)]);
        }
        return pts;
    }
    
    function getHeartPts(s) {
        const halfPts = [];
        for (let a = 0; a <= Math.PI; a += 0.05) {
            const px = 16 * Math.pow(Math.sin(a), 3);
            const py = 13 * Math.cos(a) - 5 * Math.cos(2 * a) - 2 * Math.cos(3 * a) - Math.cos(4 * a);
            halfPts.push([s * px, -s * py]);
        }
        return [...halfPts, ...halfPts.map(pt => [-pt[0], pt[1]]).reverse()];
    }
    
    function getStemPts(r, h = r/2) {
        const halfPts = getCirclePts(r, 4 * Math.PI / 6, Math.PI / 3).map(pt => [pt[0] + r*1.1, pt[1]]);
        return [[r/10, -h], ...halfPts.reverse(), ...halfPts.map(pt => [-pt[0], pt[1]]).reverse(), [-r/10, -h]];
    }
}

function loadEnum() {
    function createEnum(...values) {
        class Enum {
            constructor(...values) {
                values.forEach((v, i) => this[v.toUpperCase()] = 1 << i);
            }
            key(value) {
                return values[Math.log2(value)].toUpperCase();
            }
            keys(value) {
                const result = [];
                for(let i = 0, max = values.length; i < max; i++) {
                    if( ((value >> i) & 1) === 1 ) result.push(values[i].toUpperCase());
                }
                return result;
            }
            index(value) {
                return Math.log2(value);
            }
            indexes(value) {
                const result = [];
                for(let i = 0, max = values.length; i < max; i++) {
                    if( ((value >> i) & 1) === 1 ) result.push(1 << i);
                }
                return result;
            }
            get length() {
                return values.length;
            }
        }
        
        return new Proxy(Object.freeze(new Enum(...values)), {
            get(target, name, receiver) {
                if (Reflect.has(target, name)) {
                    let rv = Reflect.get(target, name, receiver);
                    if (typeof rv === "string") {
                        rv = rv.toUpperCase();
                    }
                    return rv;
                }
                throw new Error(`Unknown Enum property: ${name}`);
              }
        });
    }    
    
    class EnumInterface {
        static from(...arr) {
            if(arr.length == 0) throw new Error(`Need at least one key to create an Enum`);
            const keys =[...(  (typeof arr[0]) == 'string'? arr: arr[0] )].map(v => v);
            if(keys.some(k => (typeof k) != 'string')) throw new Error(`Cannot create Enum from other items than strings`);
            
            return Object.freeze(new createEnum(...keys));
        }
    }
    this.Enum = EnumInterface;
}

// Below is automatically maintained by Turtlelib 1.0
// Changes below this comment might interfere with its correct functioning.
function turtlelib_init() {
	turtlelib_ns_c6665b0e9b_Jurgen_Vector_Math();
	turtlelib_ns_c5f8fa95ed_Jurgen_Intersection();
	turtlelib_ns_2d89bd6d64_Jurgen_Path_tools();
	turtlelib_ns_80dcba45dd_Jurgen_Polygons();
	turtlelib_ns_13b81fd40e_Jurgen_Randomness();
}
// Turtlelib Jurgen Vector Math v 4 - start - {"id":"c6665b0e9b","package":"Jurgen","name":"Vector Math","version":"4"}
function turtlelib_ns_c6665b0e9b_Jurgen_Vector_Math() {
/////////////////////////////////////////////////////////
// Vector functions - Created by Jurgen Westerhof 2024 //
/////////////////////////////////////////////////////////
class Vector {
    static add  (a,b) { return a.map((v,i)=>v+b[i]); }
    static sub  (a,b) { return a.map((v,i)=>v-b[i]); }
    static mul  (a,b) { return a.map((v,i)=>v*b[i]); }
    static div  (a,b) { return a.map((v,i)=>v/b[i]); }
    static scale(a,s) { return a.map(v=>v*s); }

    static det(m)                { return m.length == 1? m[0][0]: m.length == 2 ? m[0][0]*m[1][1]-m[0][1]*m[1][0]: m[0].reduce((r,e,i) => r+(-1)**(i+2)*e*this.det(m.slice(1).map(c => c.filter((_,j) => i != j))),0); }
    static angle(a)              { return Math.PI - Math.atan2(a[1], -a[0]); } //compatible with turtletoy heading
    static rot2d(angle)          { return [[Math.cos(angle), -Math.sin(angle)], [Math.sin(angle), Math.cos(angle)]]; }
    static rot3d(yaw,pitch,roll) { return [[Math.cos(yaw)*Math.cos(pitch), Math.cos(yaw)*Math.sin(pitch)*Math.sin(roll)-Math.sin(yaw)*Math.cos(roll), Math.cos(yaw)*Math.sin(pitch)*Math.cos(roll)+Math.sin(yaw)*Math.sin(roll)],[Math.sin(yaw)*Math.cos(pitch), Math.sin(yaw)*Math.sin(pitch)*Math.sin(roll)+Math.cos(yaw)*Math.cos(roll), Math.sin(yaw)*Math.sin(pitch)*Math.cos(roll)-Math.cos(yaw)*Math.sin(roll)],[-Math.sin(pitch), Math.cos(pitch)*Math.sin(roll), Math.cos(pitch)*Math.cos(roll)]]; }
    static trans(matrix,a)       { return a.map((v,i) => a.reduce((acc, cur, ci) => acc + cur * matrix[ci][i], 0)); }
    //Mirror vector a in a ray through [0,0] with direction mirror
    static mirror2d(a,mirror)    { return [Math.atan2(...mirror)].map(angle => this.trans(this.rot2d(angle), this.mul([-1,1], this.trans(this.rot2d(-angle), a)))).pop(); }

    static equals(a,b)   { return !a.some((e, i) => e != b[i]); }
    static approx(a,b,p) { return this.len(this.sub(a,b)) < (p === undefined? .001: p); }
    static norm  (a)     { return this.scale(a,1/this.len(a)); }
    static len   (a)     { return Math.hypot(...a); }
    static lenSq (a)     { return a.reduce((a,c)=>a+c**2,0); }
    static lerp  (a,b,t) { return a.map((v, i) => v*(1-t) + b[i]*t); }
    static dist  (a,b)   { return Math.hypot(...this.sub(a,b)); }
    
    static dot  (a,b)   { return a.reduce((a,c,i) => a+c*b[i], 0); }
    static cross(...ab) { return ab[0].map((e, i) => ab.map(v => v.filter((ee, ii) => ii != i))).map((m,i) => (i%2==0?-1:1)*this.det(m)); }
    
    static clamp(a,min,max) { return a.map((e,i) => Math.min(Math.max(e, min[i]), max[i])) };
    static rotateClamp(a,min,max) { return a.map((e,i) => {const d = max[i]-min[i];if(d == 0) return min[i];while(e < min[i]) { e+=d; }while(e > max[i]) { e-=d; }return e;});
    }
}
this.V = Vector;
}
// Turtlelib Jurgen Vector Math v 4 - end
// Turtlelib Jurgen Intersection v 4 - start - {"id":"c5f8fa95ed","package":"Jurgen","name":"Intersection","version":"4"}
function turtlelib_ns_c5f8fa95ed_Jurgen_Intersection() {
///////////////////////////////////////////////////////////////
// Intersection functions - Created by Jurgen Westerhof 2024 //
///////////////////////////////////////////////////////////////
class Intersection {
    //a-start, a-direction, b-start, b-direction
    //returns false on no intersection or [[intersection:x,y], scalar a-direction, scalar b-direction
    static info(as, ad, bs, bd) { const d = V.sub(bs, as), det = -V.det([bd, ad]); if(det === 0) return false; const res = [V.det([d, bd]) / det, V.det([d, ad]) / det]; return [V.add(as, V.scale(ad, res[0])), ...res]; }
    static ray(a, b, c, d) { return this.info(a, b, c, d); }
    static segment(a,b,c,d, inclusiveStart = true, inclusiveEnd = true) { const i = this.info(a, V.sub(b, a), c, V.sub(d, c)); return i === false? false: ( (inclusiveStart? 0<=i[1] && 0<=i[2]: 0<i[1] && 0<i[2]) && (inclusiveEnd?   i[1]<=1 && i[2]<=1: i[1]<1 && i[2]<1) )?i[0]:false;}
    static tour(tour, segmentStart, segmentDirection) { return tour.map((e, i, a) => [i, this.info(e, V.sub(a[(i+1)%a.length], e), segmentStart, segmentDirection)]).filter(e => e[1] !== false && 0 <= e[1][1] && e[1][1] <= 1).filter(e => 0 <= e[1][2]).map(e => ({position: e[1][0],tourIndex: e[0],tourSegmentPortion: e[1][1],segmentPortion: e[1][2],}));}
    static inside(tour, pt) { return tour.map((e,i,a) => this.segment(e, a[(i+1)%a.length], pt, [Number.MAX_SAFE_INTEGER, 0], true, false)).filter(e => e !== false).length % 2 == 1; }
    static circles(centerA, radiusA, centerB, radiusB) {const result = {intersect_count: 0,intersect_occurs: true,one_is_in_other: false,are_equal: false,point_1: [null, null],point_2: [null, null],};const dx = centerB[0] - centerA[0];const dy = centerB[1] - centerA[1];const dist = Math.hypot(dy, dx);if (dist > radiusA + radiusB) {result.intersect_occurs = false;}if (dist < Math.abs(radiusA - radiusB) && !N.approx(dist, Math.abs(radiusA - radiusB))) {result.intersect_occurs = false;result.one_is_in_other = true;}if (V.approx(centerA, centerB) && radiusA === radiusB) {result.are_equal = true;}if (result.intersect_occurs) {const centroid = (radiusA**2 - radiusB**2 + dist * dist) / (2.0 * dist);const x2 = centerA[0] + (dx * centroid) / dist;const y2 = centerA[1] + (dy * centroid) / dist;const prec = 10000;const h = (Math.round(radiusA**2 * prec)/prec - Math.round(centroid**2 * prec)/prec)**.5;const rx = -dy * (h / dist);const ry = dx * (h / dist);result.point_1 = [x2 + rx, y2 + ry];result.point_2 = [x2 - rx, y2 - ry];if (result.are_equal) {result.intersect_count = Infinity;} else if (V.equals(result.point_1, result.point_2)) {result.intersect_count = 1;} else {result.intersect_count = 2;}}return result;}
}
this.Intersection = Intersection;
}
// Turtlelib Jurgen Intersection v 4 - end
// Turtlelib Jurgen Path tools v 3 - start - {"id":"2d89bd6d64","package":"Jurgen","name":"Path tools","version":"3"}
function turtlelib_ns_2d89bd6d64_Jurgen_Path_tools() {
///////////////////////////////////////////////////////
// Path functions - Created by Jurgen Westerhof 2024 //
///////////////////////////////////////////////////////
class PathTools {
    static bezier(p1, cp1, cp2, p2, steps = null) {steps = (steps === null? Math.max(3, (V.len(V.sub(cp1, p1)) + V.len(V.sub(cp2, cp1)) + V.len(V.sub(p2, cp2))) | 0): steps) - 1; return Array.from({length: steps + 1}).map((v, i, a, f = i/steps) => [[V.lerp(p1, cp1, f),V.lerp(cp1, cp2, f),V.lerp(cp2, p2, f)]].map(v => V.lerp(V.lerp(v[0], v[1], f), V.lerp(v[1], v[2], f), f))[0]);}
    // https://stackoverflow.com/questions/18655135/divide-bezier-curve-into-two-equal-halves#18681336
    static splitBezier(p1, cp1, cp2, p2, t=.5) {const e = V.lerp(p1, cp1, t);const f = V.lerp(cp1, cp2, t);const g = V.lerp(cp2, p2, t);const h = V.lerp(e, f, t);const j = V.lerp(f, g, t);const k = V.lerp(h, j, t);return [[p1, e, h, k], [k, j, g, p2]];}
    static circular(radius,verticeCount,rotation=0) {return Array.from({length: verticeCount}).map((e,i,a,f=i*2*Math.PI/verticeCount+rotation) => [radius*Math.cos(f),radius*Math.sin(f)])}
    static circle(r){return this.circular(r,Math.max(12, (r*10)|0));}
    static arc(radius, extend = 2 * Math.PI, clockWiseStart = 0, steps = null, includeLast = false) { return [steps == null? (radius*extend+1)|0: steps].map(steps => Array.from({length: steps}).map((v, i, a) => [radius * Math.cos(clockWiseStart + extend*i/(a.length-(includeLast?1:0))), radius * Math.sin(clockWiseStart + extend*i/(a.length-(includeLast?1:0)))])).pop(); }
    static draw(turtle, path) {path.forEach((pt, i) => turtle[i==0?'jump':'goto'](pt));}
    static drawTour(turtle, path) {this.draw(turtle, path.concat([path[0]]));}
    static drawPoint(turtle, pt, r = .1) {this.drawTour(turtle, this.circle(r).map(e => V.add(e, pt)));}
    static drawArrow(turtle, s, d, width = 6, length = 3) {turtle.jump(s);const arrowHeadBase = V.add(s,d);turtle.goto(arrowHeadBase);turtle.goto(V.add(arrowHeadBase, V.trans(V.rot2d(-V.angle(d)), [-length, width/2])));turtle.jump(V.add(arrowHeadBase, V.trans(V.rot2d(-V.angle(d)), [-length, -width/2])));turtle.goto(arrowHeadBase);}
    static circlesTangents(c1_center, c1_radius, c2_center, c2_radius, internal = false) {let middle_circle = [V.scale(V.sub(c1_center, c2_center), .5)].map(hwp => [V.add(c2_center, hwp), V.len(hwp)]).pop();if(!internal && c1_radius == c2_radius) {let target = V.sub(c2_center, c1_center);let scaledTarget = V.scale(target, c1_radius/V.len(target));let partResult = [V.add(c1_center, V.trans(V.rot2d(Math.PI/2), scaledTarget)),V.add(c1_center, V.trans(V.rot2d(Math.PI/-2), scaledTarget))];return [partResult,partResult.map(pt => V.add(pt, target))]}let swap = !internal && c2_radius > c1_radius;if(swap) {let t = [[...c1_center], c1_radius];c1_center = c2_center;c1_radius = c2_radius;c2_center = t[0];c2_radius = t[1];}let internal_waypoints = Intersection.circles(c1_center, c1_radius + (internal?c2_radius:-c2_radius), ...middle_circle);if(!internal_waypoints.intersect_occurs) return [];const circlePointAtDirection2 = (circle_center, radius, direction) => V.add(circle_center, V.scale(direction, radius/V.len(direction)));const result = [[circlePointAtDirection2(c1_center, c1_radius, V.sub(internal_waypoints.point_1, c1_center)),circlePointAtDirection2(c1_center, c1_radius, V.sub(internal_waypoints.point_2, c1_center))],[circlePointAtDirection2(c2_center, c2_radius, internal?V.sub(c1_center, internal_waypoints.point_1):V.sub(internal_waypoints.point_1, c1_center)),circlePointAtDirection2(c2_center, c2_radius, internal?V.sub(c1_center, internal_waypoints.point_2):V.sub(internal_waypoints.point_2, c1_center))]];return swap? [[result[1][1],result[1][0]],[result[0][1],result[0][0]]]: result;}
    static vectors(path) {return Array.from({length: path.length - 1}).map((e, i) => V.sub(path[i+1], path[i]));}
    static path(vectors) {return vectors.reduce((a,c) => a.length==0?[c]:[...a, V.add(c, a[a.length-1])], []);}
    static redistributeLinear(path, length = .5) {const p = path.map(pt => [...pt]);const result = [[...p[0]]];let pointer = 1;doneAll: while(pointer < p.length) {let l = length;while(pointer < p.length) {const distance = V.len(V.sub(p[pointer], p[pointer - 1]));if(distance < l) {l-=distance;pointer++;continue;}if(distance == l) {if(pointer < p.length - 1) result.push([...p[pointer]]);pointer++;break doneAll;}if(l < distance) {const newPoint = V.lerp(p[pointer-1], p[pointer], l/distance);if(pointer < p.length - 1) result.push([...newPoint]);p[pointer - 1] = newPoint;break;}}}result.push(p.pop());return result;}
    static length(path) { return this.lengths(path).reduce((c, a) => a + c, 0); }
    static lengths(path) { return path.map((e, i, a) => V.len(V.sub(e, a[(i+1)%a.length]))).filter((e, i, a) => i < a.length - 1); }
    static intersectInfoRay(path, origin, direction) {const vectors = this.vectors(path);const ri = vectors.map((e, i) => [i, Intersection.info(origin, direction, path[i], e)]).filter(e => 0 <= e[1][2] && e[1][2] <= 1 && 0 < e[1][1]).sort(e => e[1][1]);if(ri.length == 0) return false;const hit = ri[0];const lengths = this.lengths(path);const length = lengths.reduce((a, c) => a + c, 0);let l = 0;for(let i = 0; i < hit[0]; i++) {l += lengths[i];}return [hit[1][0], (l + (lengths[hit[0]] * hit[1][2])) / length, hit[1][1]];}
    static lerp(path, part) {if(part < 0 || 1 < part) throw new Error('Range of part is 0 to 1, got ' + path);const lengths = this.lengths(path);const length = lengths.reduce((a, c) => a + c, 0);let l = length * part;for(let i = 0; i < lengths.length; i++) {if(lengths[i] < l) {l-=lengths[i];continue;}return V.lerp(path[i], path[i+1], l / V.len(V.sub(path[i+1], path[i])));}return [...path[path.length - 1]];}
    static boundingBox(path) { return path.reduce((a, c) => [[Math.min(c[0], a[0][0]), Math.min(c[1], a[0][1])],[Math.max(c[0], a[1][0]), Math.max(c[1], a[1][1])]], [path[0], path[0]]); }
}
this.PT = PathTools;
}
// Turtlelib Jurgen Path tools v 3 - end
// Turtlelib Jurgen Polygons v 1 - start - {"id":"80dcba45dd","package":"Jurgen","name":"Polygons","version":"1"}
function turtlelib_ns_80dcba45dd_Jurgen_Polygons() {
////////////////////////////////////////////////////////////////
// Polygon Clipping utility code - Created by Reinder Nijhoff 2019
// (Polygon binning by Lionel Lemarie 2021) https://turtletoy.net/turtle/95f33bd383
// (Delegated Hatching by Jurgen Westerhof 2024) https://turtletoy.net/turtle/d068ad6040
// (Deferred Polygon Drawing by Jurgen Westerhof 2024) https://turtletoy.net/turtle/6f3d2bc0b5
// https://turtletoy.net/turtle/a5befa1f8d
//
// const polygons = new Polygons();
// const p = polygons.create();
// polygons.draw(turtle, p);
// polygons.list();
// polygons.startDeferSession();
// polygons.stopDeferring();
// polygons.finalizeDeferSession(turtle);
//
// p.addPoints(...[[x,y],]);
// p.addSegments(...[[x,y],]);
// p.addOutline();
// p.addHatching(angle, distance); OR p.addHatching(HatchObject); where HatchObject has a method 'hatch(PolygonClass, thisPolygonInstance)'
// p.inside([x,y]);
// p.boolean(polygon, diff = true);
// p.segment_intersect([x,y], [x,y], [x,y], [x,y]);
////////////////////////////////////////////////////////////////
function Polygons(){const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{constructor(){this.cp=[],this.dp=[],this.aabb=[]}addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]}addSegments(...t){t.forEach(t=>this.dp.push(t))}addOutline(){for(let t=0,s=this.cp.length;t<s;t++)this.dp.push(this.cp[t],this.cp[(t+1)%s])}draw(t){for(let s=0,e=this.dp.length;s<e;s+=2)t.jump(this.dp[s]),t.goto(this.dp[s+1])}addHatching(t, s) {if(typeof t == 'object') return t.hatch(n, this);const e=new n;e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t);for(let t=.5;t<150/s;t++) {e.dp.push([h*t+i,o*t-a],[h*t-i,o*t+a]);e.dp.push([-h*t+i,-o*t-a],[-h*t-i,-o*t+a]);}e.boolean(this,!1);this.dp=[...this.dp,...e.dp]}inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s}boolean(t,s=!0){const e=[];for(let n=0,h=this.dp.length;n<h;n+=2){const h=this.dp[n],o=this.dp[n+1],a=[];for(let s=0,e=t.cp.length;s<e;s++){const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]);!1!==n&&a.push(n)}if(0===a.length)s===!t.inside(h)&&e.push(h,o);else{a.push(h,o);const n=o[0]-h[0],i=o[1]-h[1];a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i);for(let n=0;n<a.length-1;n++)(a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001&&s===!t.inside([(a[n][0]+a[n+1][0])/2,(a[n][1]+a[n+1][1])/2])&&e.push(a[n],a[n+1])}}return(this.dp=e).length>0}segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]}};const y=function(n,j=[]){const h={},o=200/s;for(var a=0;a<s;a++){const c=a*o-100,r=[0,c,200,c+o];if(!(n[3]<r[1]||n[1]>r[3]))for(var i=0;i<s;i++){const c=i*o-100;r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{const e=t[s];n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||j.includes(s)||(h[s]=1)})}}return Array.from(Object.keys(h),s=>t[s])};return{list:()=>t,create:()=>new n,draw:(n,h,o=!0)=>{rpl=y(h.aabb, this.dei === undefined? []: Array.from({length: t.length - this.dei}).map((e, i) => this.dsi + i));for(let t=0;t<rpl.length&&h.boolean(rpl[t]);t++);const td=n.isdown();if(this.dsi!==undefined&&this.dei===undefined)n.pu();h.draw(n),o&&function(n){t.push(n);const h=t.length-1,o=200/s;e.forEach((t,e)=>{const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o];c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h)})}(h);if(td)n.pd();},startDeferSession:()=>{if(this.dei!==undefined)throw new Error('Finalize deferring before starting new session');this.dsi=t.length;},stopDeferring:()=>{if(this.dsi === undefined)throw new Error('Start deferring before stopping');this.dei=t.length;},finalizeDeferSession:(n)=>{if(this.dei===undefined)throw new Error('Stop deferring before finalizing');for(let i=this.dsi;i<this.dei;i++) {rpl = y(t[i].aabb,Array.from({length:this.dei-this.dsi+1}).map((e,j)=>i+j));for(let j=0;j<rpl.length&&t[i].boolean(rpl[j]);j++);t[i].draw(n);}this.dsi=undefined;this.dei=undefined;}}}
this.Polygons = Polygons;
}
// Turtlelib Jurgen Polygons v 1 - end
// Turtlelib Jurgen Randomness v 2 - start - {"id":"13b81fd40e","package":"Jurgen","name":"Randomness","version":"2"}
function turtlelib_ns_13b81fd40e_Jurgen_Randomness() {
///////////////////////////////////////////////////////////////
// Pseudorandom functions - Created by Jurgen Westerhof 2024 //
///////////////////////////////////////////////////////////////
class Random {
    static #apply(seed) {
        // Seedable random number generator by David Bau: http://davidbau.com/archives/2010/01/30/random_seeds_coded_hints_and_quintillions.html
        !function(a,b,c,d,e,f,g,h,i){function j(a){var b,c=a.length,e=this,f=0,g=e.i=e.j=0,h=e.S=[];for(c||(a=[c++]);d>f;)h[f]=f++;for(f=0;d>f;f++)h[f]=h[g=s&g+a[f%c]+(b=h[f])],h[g]=b;(e.g=function(a){for(var b,c=0,f=e.i,g=e.j,h=e.S;a--;)b=h[f=s&f+1],c=c*d+h[s&(h[f]=h[g=s&g+b])+(h[g]=b)];return e.i=f,e.j=g,c})(d)}function k(a,b){var c,d=[],e=typeof a;if(b&&"object"==e)for(c in a)try{d.push(k(a[c],b-1))}catch(f){}return d.length?d:"string"==e?a:a+"\0"}function l(a,b){for(var c,d=a+"",e=0;e<d.length;)b[s&e]=s&(c^=19*b[s&e])+d.charCodeAt(e++);return n(b)}function m(c){try{return o?n(o.randomBytes(d)):(a.crypto.getRandomValues(c=new Uint8Array(d)),n(c))}catch(e){return[+new Date,a,(c=a.navigator)&&c.plugins,a.screen,n(b)]}}function n(a){return String.fromCharCode.apply(0,a)}var o,p=c.pow(d,e),q=c.pow(2,f),r=2*q,s=d-1,t=c["seed"+i]=function(a,f,g){var h=[];f=1==f?{entropy:!0}:f||{};var o=l(k(f.entropy?[a,n(b)]:null==a?m():a,3),h),s=new j(h);return l(n(s.S),b),(f.pass||g||function(a,b,d){return d?(c[i]=a,b):a})(function(){for(var a=s.g(e),b=p,c=0;q>a;)a=(a+c)*d,b*=d,c=s.g(1);for(;a>=r;)a/=2,b/=2,c>>>=1;return(a+c)/b},o,"global"in f?f.global:this==c)};if(l(c[i](),b),g&&g.exports){g.exports=t;try{o=require("crypto")}catch(u){}}else h&&h.amd&&h(function(){return t})}(this,[],Math,256,6,52,"object"==typeof module&&module,"function"==typeof define&&define,"random");
        Math.seedrandom(seed);
    }
    static seedRandom() { this.#apply(new Date().getMilliseconds()); }
    static seedDaily() { this.#apply(new Date().toDateString()); }
    static seed(seed) { this.#apply(seed); }
    static getInt(min, max) { if(max == undefined) {max = min + 1; min = 0; } const [mi, ma] = [Math.min(min, max), Math.max(min, max)]; return (mi + Math.random() * (ma - mi)) | 0;}
    static get(min, max) {if(min == undefined) {return Math.random();}if(max == undefined) {max = min;min = 0;}const [mi, ma] = [Math.min(min, max), Math.max(min, max)];return mi + Math.random() * (ma - mi);}
    static fraction(whole) { return this.get(0, whole); }
    static getAngle(l = 1) { return l * this.get(0, 2*Math.PI); }
    // Standard Normal variate using Box-Muller transform.
    static getGaussian(mean=.5, stdev=.1) {const u = 1 - this.get(); /* Converting [0,1) to (0,1] */const v = this.get();const z = ( -2.0 * Math.log( u ) )**.5 * Math.cos( 2.0 * Math.PI * v );/* Transform to the desired mean and standard deviation: */return z * stdev + mean;}
    static skew(value, skew = 0) { /*skew values (from 0 to 1) by a skew from -1 to 1, respectively right and left skewed (resp more values to left or to right), 0 is not skewed*/return (skew < 0)? value - (this.skew(1-value, -skew) - (1-value)): Math.pow(value, 1-Math.abs(skew));}
    static getNormalDistributed(skew = 0) { /*skew values (from 0 to 1) by a skew from -1 to 1, respectively right and left skewed (resp more values to left or to right), 0 is not skewed*/let v = -1;while(v < 0 || 1 <= v) { v = this.getGaussian(.5, .1) };return this.skew(v, skew);}
}
this.R = Random;
}
// Turtlelib Jurgen Randomness v 2 - end