Deep ocean floor

Ray marching with sculpting, twisting, displacement, repetition, and sort of a fog.

Log in to post a comment.

// Forked from "Making waves" by PavlikEnemy
// https://turtletoy.net/turtle/13016b43d5


Canvas.setpenopacity(-0.3);

const t = new Turtle();


const scrZ = 6.0;
const scrR = 1.0;

const eyeZ = 9.0;

const camRotX = -60 * Math.PI/180;
const camRotY = -15 * Math.PI/180;

const step = 0.25;


const Dmax = scrZ + 120;

const EPS = 0.0001;

const MAX_N_STEPS = 256;


function plus(v1, v2) {
    return [v1[0] + v2[0], v1[1] + v2[1], v1[2] + v2[2]];
}

function minus(v1, v2) {
    return [v1[0] - v2[0], v1[1] - v2[1], v1[2] - v2[2]];
}

function mod(v1, v2) {
    return [v1[0] % v2[0], v1[1] % v2[1], v1[2] % v2[2]];
}

function multiply(a, v) {
    return [a * v[0], a * v[1], a * v[2]];
}

function abs(v) {
    return [Math.abs(v[0]), Math.abs(v[1]), Math.abs(v[2])];
}

function length(v) {
    return Math.sqrt(v[0]**2 + v[1]**2 + v[2]**2);
}

function normalize(v) {
    return multiply(1 / length(v), v);
}

function rotate(v, phi) {
    return [v[0] * Math.cos(phi) - v[1] * Math.sin(phi),
            v[0] * Math.sin(phi) + v[1] * Math.cos(phi)];
}


function cast_ray_from_screen(x, y) {
    let px = -scrR + 2 * scrR * (x / 200);
    let py = -scrR + 2 * scrR * (y / 200);
    let pz = scrZ;
    
    [px, py] = rotate([px, py], camRotY);
    [py, pz] = rotate([py, pz], camRotX);

    let ex = 0, ey = 0, ez = eyeZ;
    
    //[ex, ey] = rotate([ex, ey], camRotY)
    [ey, ez] = rotate([ey, ez], camRotX)

    let p = [px, py, pz];
    let eye = [ex, ey, ez];
    
    let dir = normalize(minus(p, eye));

    return [p, dir];
}

function intersect_df(p, dir, df) {
    let D = 0;
    var n_steps;
    
    for (n_steps = 0; n_steps < MAX_N_STEPS; n_steps++) {
        let d = scene_df(p);
        
        if ((d < EPS) || (D > Dmax)) {
            break;
        }
        else {
            p = plus(p, multiply(d, dir));
            
            D += d;
        }
    }
    
    return [p, D, n_steps];
}

function cylinder_df(p, c, h, r) { // axis z
    const [px, py, pz] = minus(p, c);
    
    let dxy = Math.sqrt(px**2 + py**2) - r;
    let dz = Math.abs(pz) - h/2;

    if (dxy > 0) {
        if (dz > 0) {
            return Math.sqrt(dxy**2 + dz**2);
        }
        else {
            return dxy;
        }
    }
    else {
        if (dz > 0) {
            return dz;
        }
        else {
            return Math.max(dxy, dz);
        }
    }
}

function plane_df(p) { // z = 0
    return p[2];
}

function sphere_df(p, c, r) {
    return length(minus(c, p)) - r;
} 

// see https://iquilezles.org/articles/smin/
function smooth_min(a, b, k) {
    let h = Math.max(k - Math.abs(a - b), 0) / k;
    return Math.min(a, b) - h*h*h*k*(1/6);
}

function smooth_max(a, b, k) {
    return -smooth_min(-a, -b, k);
}

function scene_df(p) {
    const r = 0.075;
    const h = 2.5;
    
    p0 = p;

    const periods = [1.0, 1.5, 100.0];
    const half_periods = multiply(0.5, periods);

    let hx = Math.floor((Math.abs(p[0]) + periods[0]/2) / periods[0]);
    let hy = Math.floor((Math.abs(p[1]) + periods[1]/2) / periods[1]);
    let hash = 1 - 2 * ((Math.sin(hx * 12.9898 + hy * 78.233) * 43758.5453) % 1);

    //let phi = p[2] * 5 - Math.PI/2;
    let phi = p[2] * 5 - 2 * Math.PI * hash;

    p = plus(p, [101, 99, 0]);
    p = minus(mod(plus(p, half_periods), periods), half_periods); 

    let [px, py] = rotate([p[0], p[1]], phi);

    let p_tr = [px, py, p[2]];

    let c = [0, 0.1, 0];
    let cyl_df = cylinder_df(p_tr, c, h, r);

    let cr1 = 2 * r;
    let cs1 = [c[0], c[1], c[2] + h/2];
    let sph1_df = sphere_df(p_tr, cs1, cr1);

    let cr3 = 1.25 * r;
    let a = 1.25;
    let dr = 1.5 * cr1;
    let cs3 = [c[0] - dr, c[1], c[2] + h/2 + a * cr1];
    let sph3_df = sphere_df(p_tr, cs3, cr3);
    cs3 = [c[0] + dr, c[1], c[2] + h/2 + a * cr1];
    sph3_df = Math.min(sph3_df, sphere_df(p_tr, cs3, cr3));
    cs3 = [c[0], c[1] - dr, c[2] + h/2 + a * cr1];
    sph3_df = Math.min(sph3_df, sphere_df(p_tr, cs3, cr3));
    cs3 = [c[0], c[1] + dr, c[2] + h/2 + a * cr1];
    sph3_df = Math.min(sph3_df, sphere_df(p_tr, cs3, cr3));

    let cr2 = 2.0 * r;
    let cs2 = [c[0], c[1], c[2] + h/2 + cr1];
    let sph2_df = sphere_df(p_tr, cs2, cr2);

    let pl_df = plane_df(p);

    let noise1 = 0.015 * Math.sin(30 * p_tr[0]) * Math.sin(30 * p_tr[1]) * Math.sin(40 * p_tr[2]);
    //let noise2 = 0.025 * Math.sin(31 * (p0[0] + 2 * p0[1])) * Math.sin(29 * (p0[1])) * Math.sin(40 * p0[2]);
    
    var df;
    df = smooth_min(cyl_df, sph1_df, 0.05);
    df = smooth_min(df, sph3_df, 0.3);
    df = smooth_max(df, -sph2_df, 0.05);
    df += noise1
    //pl_df += noise2
    //pl_df += 0.005 * (1 - 2 * ((Math.sin(10*p0[0] * 12.9898 + 10*p0[1] * 78.233) * 43758.5453) % 1))
    pl_df += 0.2 * (1 - 2 * ((Math.sin(10*p0[0] * 12.9898 + 10*p0[1] * 78.233) * 43758.5453) % 1))
    df = smooth_min(pl_df, df, 0.75);
    //df += 0.005 * (1 - 2 * ((Math.sin(10*p0[0] * 12.9898 + 10*p0[1] * 78.233) * 43758.5453) % 1))
    //df += 0.002 * (1 - 2 * ((Math.sin(10*p0[0] * 12.9898 + 10*p0[1] * 78.233) * 43758.5453) % 1))

    return df;
}


let x = 0;
let y = 0;

function walk(frame) {
    const [p, dir] = cast_ray_from_screen(x, y);
    
    const [p_int, dist_to_int, n_steps] = intersect_df(p, dir, scene_df);
    
    
    if (dist_to_int < Dmax) {
        let s = step * Math.max(0.1, (1 - n_steps / 50))**2.5;
        
        t.seth(360 * Math.random());

        for (let i = 0; i < 4; i++) {
            t.jump(x - 100, y - 100);
            t.right(90);
            t.forward(s);
        }
    }

    
    x += step;
    if (x > 200) {
        y += step;
        x = 0;
    }
    
    return (y < 200);
}