mountains

mountains

Log in to post a comment.

// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(1);
const polygons = Polygons();

// Global code will be evaluated once.
const turtle = new Turtle();
turtle.penup();

const sun = (x, y, r, a, s) => {
    const p = polygons.create();
    for (let a = 0; a < 2 * Math.PI; a += Math.PI / 36) {
        p.addPoints([x + r * Math.cos(a), y + r * Math.sin(a)]);
    }
    p.addOutline();
	if (s) p.addHatching(a, s);
    polygons.draw(turtle, p);
};

const mountains = ( h, a, s ) => {
    const p = polygons.create();
	let ht = h;
	for (let i = -100; i <= 100; i += 10) {
		const d = Math.random() > 0.5 ? 1 : -1;
		ht += d * (Math.random() * Math.random() * (Math.random() > 0.8 ? 80 : 40));
		if (ht > 90) ht = 90;
		if (ht < h - 60) ht += Math.random() * 40;
		p.addPoints([i, ht]);
		k++;
		hts += ht;
	}
	p.addPoints([100, 100]);
	p.addPoints([-100, 100]);
	if (s) p.addHatching(a, s);
    polygons.draw(turtle, p);
};

let k = 0, hts = 0;
mountains(90, 0, 0.1);
mountains(60, Math.random() * 2 * Math.PI, 0.6);
mountains(30, Math.random() * 2 * Math.PI, 1);
mountains(0, Math.random() * 2 * Math.PI, 2);
sun(-35, hts / k - 50, 50, 0, 0.1);

////////////////////////////////////////////////////////////////
// reinder's occlusion code parts from "Cubic space division #2"
// Optimizations and code clean-up by ge1doot
////////////////////////////////////////////////////////////////

function Polygons() {
	const polygonList = [];
	const Polygon = class {
		constructor() {
			this.cp = [];       // clip path: array of [x,y] pairs
			this.dp = [];       // 2d line to draw
			this.aabb = [];     // AABB bounding box
		}
		addPoints(...points) {
		    for (let i = 0; i < points.length; i++) this.cp.push(points[i]);
		    this.aabb = this.AABB();
		}
		addOutline(s = 0) {
			for (let i = s, l = this.cp.length; i < l; i++) {
				this.dp.push(this.cp[i], this.cp[(i + 1) % l]);
			}
		}
		draw(t) {
			if (this.dp.length === 0) return;
			for (let i = 0, l = this.dp.length; i < l; i+=2) {
			    const d0 = this.dp[i];
				const d1 = this.dp[i + 1];
				t.penup();
				t.goto(d0);
				t.pendown();
				t.goto(d1);
			}
		}
		AABB() {
			let xmin = 2000;
			let xmax = -2000;
			let ymin = 2000;
			let ymax = -2000;
			for (let i = 0, l = this.cp.length; i < l; i++) {
				const x = this.cp[i][0];
				const y = this.cp[i][1];
				if (x < xmin) xmin = x;
				if (x > xmax) xmax = x;
				if (y < ymin) ymin = y;
				if (y > ymax) ymax = y;
			}
			// Bounding box: center x, center y, half w, half h
			return [
				(xmin + xmax) * 0.5,
				(ymin + ymax) * 0.5,
				(xmax - xmin) * 0.5,
				(ymax - ymin) * 0.5
			];
		}
    	addHatching(a, d) {
    	    a += Math.PI / 2;
            const tp = new Polygon();
            const x = this.aabb[0], y = this.aabb[1];
            const w = this.aabb[2], h = this.aabb[3];
            const l = Math.sqrt((w * 2) ** 2 + (h * 2) ** 2) * 0.5;
            tp.cp.push([x - w, y - h], [x + w, y - h], [x + w, y + h], [x - w, y + h]);
            const cx = Math.sin(a) * l, cy = Math.cos(a) * l;
            let px = x - Math.cos(a) * l;
            let py = y - Math.sin(a) * l;
            for (let i = 0; i < l * 2; i += d) {
                tp.dp.push([px + cx, py - cy], [px - cx, py + cy]);
                px += Math.cos(a) * d;
                py += Math.sin(a) * d;
            }
            tp.boolean(this, false);
            for (const dp of tp.dp) this.dp.push(dp);
    	}
		inside(p) {
			// find number of i ntersection points from p to far away
			const p1 = [0.1, -1000];
			let int = 0;
			for (let i = 0, l = this.cp.length; i < l; i++) {
			    if ( (p[0]-this.cp[i][0])**2 +  (p[1]-this.cp[i][1])**2 <= 0.001) return false;
				if (
					this.vec2_find_segment_intersect(
						p,
						p1,
						this.cp[i],
						this.cp[(i + 1) % l]
					) !== false
				) {
					int++;
				}
			}
			return int & 1;
		}
		boolean(p, diff = true) {
			// polygon diff algorithm
			const ndp = [];
			for (let i = 0, l = this.dp.length; i < l; i+=2) {
				const ls0 = this.dp[i];
				const ls1 = this.dp[i + 1];
				// find all intersections with clip path
				const int = [];
				for (let j = 0, cl = p.cp.length; j < cl; j++) {
					const pint = this.vec2_find_segment_intersect(
						ls0,
						ls1,
						p.cp[j],
						p.cp[(j + 1) % cl]
					);
					if (pint !== false) {
						int.push(pint);
					}
				}
				if (int.length === 0) {
					// 0 intersections, inside or outside?
					if (diff === !p.inside(ls0)) {
						ndp.push(ls0, ls1);
					}
				} else {
					int.push(ls0, ls1);
					// order intersection points on line ls.p1 to ls.p2
					const cmpx = ls1[0] - ls0[0];
					const cmpy = ls1[1] - ls0[1];
					for (let i = 0, len = int.length; i < len; i++) {
					    let j = i;
					    const item = int[j];
						for (
							const db = (item[0] - ls0[0]) * cmpx + (item[1] - ls0[1]) * cmpy;
							j > 0 && (int[j - 1][0] - ls0[0]) * cmpx + (int[j - 1][1] - ls0[1]) * cmpy < db;
							j--
						) int[j] = int[j - 1];
						int[j] = item;
					}
					for (let j = 0; j < int.length - 1; j++) {
						if (
							(int[j][0] - int[j + 1][0]) ** 2 + (int[j][1] - int[j + 1][1]) ** 2 >= 0.01
						) {
							if (
								diff ===
								!p.inside([
									(int[j][0] + int[j + 1][0]) / 2,
									(int[j][1] + int[j + 1][1]) / 2
								])
							) {
								ndp.push(int[j], int[j + 1]);
							}
						}
					}
				}
			}
			this.dp = ndp;
			return this.dp.length > 0;
		}
		//port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs
		vec2_find_segment_intersect(l1p1, l1p2, l2p1, l2p2) {
			const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]);
			if (d === 0) return false;
			const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]);
			const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]);
			const ua = n_a / d;
			const ub = n_b / d;
			if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) {
				return [
					l1p1[0] + ua * (l1p2[0] - l1p1[0]),
					l1p1[1] + ua * (l1p2[1] - l1p1[1])
				];
			}
			return false;
		}
	};
	return {
		create() {
			return new Polygon();
		},
		draw(turtle, p) {
			let vis = true;
			for (let j = 0; j < polygonList.length; j++) {
                const p1 = polygonList[j];
				// AABB overlapping test - still O(N2) but very fast
				if (
					Math.abs(p1.aabb[0] - p.aabb[0]) - (p.aabb[2] + p1.aabb[2]) < 0 &&
					Math.abs(p1.aabb[1] - p.aabb[1]) - (p.aabb[3] + p1.aabb[3]) < 0
				) {
					if (p.boolean(p1) === false) {
						vis = false;
						break;
					}
				}
			}
			if (vis) {
				p.draw(turtle);
				polygonList.push(p);
			}
		}
	};
}