Two regularly interconnected circles where the connections have Bezier properties.
Log in to post a comment.
const innerRadius = 10; //min=0 max=50 step=1 const outerRadius = 90; //min=51 max=100 step=1 const nLines = 70; //min=1 max=200 step=1 const spin = 0; //min=0 max=360 step=1 const innerVolume = 65; //min=1 max=100 step=1 const outerVolume = 75; //min=1 max=100 step=1 const innerOffset = 90; //min=0 max=360 step=1 const outerOffset = 90; //min=0 max=360 step=1 const plotFinish = 1; //min=0 max=1 step=1 (No, Yes) const midControl = 0; //min=0 max=1 step=1 (No, Yes) const midRadius = 50; //min=10 max=80 step=1 const midSpin = 90; //min=0 max=360 step=1 const minInnerVolume = 10; //min=1 max=100 step=1 const minOuterVolume = 10; //min=1 max=100 step=1 const midOffset = 90; //min=0 max=360 step=1 // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(1); // Global code will be evaluated once. const turtle = new Turtle(); const innerCirclePoints = circlePoints(innerRadius, 2 * Math.PI, 0, nLines); const midCirclePoints = circlePoints(midRadius, 2*Math.PI, midSpin * Math.PI/180, nLines); const outerCirclePoints = circlePoints(outerRadius, 2 * Math.PI, spin * Math.PI/180, nLines); const innerRot = rot2(innerOffset * Math.PI / 180); const midRot = rot2(midOffset * Math.PI / 180); const outerRot = rot2(outerOffset * Math.PI / 180); if(plotFinish == 1) { drawTour(turtle, circlePoints(innerRadius)); drawTour(turtle, circlePoints(outerRadius)); } // The walk function will be called until it returns false. function walk(i) { if(midControl == 0) { drawPath(turtle, bezier2( innerCirclePoints[i], trans2(innerRot, scale2(norm2(innerCirclePoints[i]), innerVolume)), outerCirclePoints[i], trans2(outerRot, scale2(norm2(outerCirclePoints[i]), -outerVolume)), outerRadius )); } else { drawPath(turtle, bezier2( innerCirclePoints[i], trans2(innerRot, scale2(norm2(innerCirclePoints[i]), innerVolume)), midCirclePoints[i], trans2(midRot, scale2(norm2(midCirclePoints[i]), -minInnerVolume)), (outerRadius / 2) | 0 )); drawPath(turtle, bezier2( midCirclePoints[i], trans2(midRot, scale2(norm2(midCirclePoints[i]), minOuterVolume)), outerCirclePoints[i], trans2(outerRot, scale2(norm2(outerCirclePoints[i]), -outerVolume)), (outerRadius / 2) | 0 )); } return i < nLines - 1; } function approx1(a,b,delta=0.0001) { return -delta < a-b && a-b < delta } //////////////////////////////////////////////////////////////// // 2D Vector Math utility code - Created by several Turtletoy users //////////////////////////////////////////////////////////////// function norm2(a) { return scale2(a, 1/len2(a)); } function add2(a, b) { return [a[0]+b[0], a[1]+b[1]]; } function sub2(a, b) { return [a[0]-b[0], a[1]-b[1]]; } function mul2(a, b) { return [a[0]*b[0], a[1]*b[1]]; } function scale2(a, s) { return mul2(a, [s,s]); } function lerp2(a,b,t) { return [a[0]*(1-t) + b[0]*t, a[1]*(1-t) + b[1]*t]; } function lenSq2(a) { return a[0]**2+a[1]**2; } function len2(a) { return Math.sqrt(lenSq2(a)); } function rot2(a) { return [Math.cos(a), -Math.sin(a), Math.sin(a), Math.cos(a)]; } function trans2(m, a) { return [m[0]*a[0]+m[2]*a[1], m[1]*a[0]+m[3]*a[1]]; } //Matrix(2x1) x Matrix(2x2) function dist2(a,b) { return Math.hypot(...sub2(a,b)); } function dot2(a,b) { return a[0]*b[0]+a[1]*b[1]; } function cross2(a,b) { return a[0]*b[1] - a[1]*b[0]; } function multiply2(a2x2, a) { return [(a[0]*a2x2[0])+(a[1]*a2x2[1]),(a[0]*a2x2[2])+(a[1]*a2x2[3])]; } //Matrix(2x2) x Matrix(1x2) function intersect_info2(as, ad, bs, bd) { const d = [bs[0] - as[0], bs[1] - as[1]]; const det = bd[0] * ad[1] - bd[1] * ad[0]; if(det === 0) return false; const res = [(d[1] * bd[0] - d[0] * bd[1]) / det, (d[1] * ad[0] - d[0] * ad[1]) / det]; return [...res, add2(as, scale2(ad, res[0]))]; } function intersect_ray2(a, b, c, d) { const i = intersect_info2(a, b, c, d); return i === false? i: i[2]; } function segment_intersect2(a,b,c,d, inclusive = true) { const i = intersect_info2(a, sub2(b, a), c, sub2(d, c)); if(i === false) return false; const t = inclusive? 0<=i[0]&&i[0]<=1&&0<=i[1]&&i[1]<=1: 0<i[0]&&i[0]<1&&0<i[1]&&i[1]<1; return t?i[2]:false; } function approx2(a,b,delta=0.0001) { return len2(sub2(a,b)) < delta } function eq2(a,b) { return a[0]==b[0]&&a[1]==b[1]; } function clamp2(a, tl, br) { return [Math.max(Math.min(br[0], a[0]), tl[0]), Math.max(Math.min(br[1], a[1]), tl[1])]; } function nearSq2(test, near, delta = .0001) { return near[0] - delta < test[0] && test[0] < near[0] + delta && near[1] - delta < test[1] && test[1] < near[1] + delta; } //////////////////////////////////////////////////////////////// // Start of some path utility code - Created by Jurgen Westerhof 2023 //////////////////////////////////////////////////////////////// function circlePoints(radius, extend = 2 * Math.PI, clockWiseStart = 0, steps = null, includeLast = false) { return [steps == null? (radius*extend+1)|0: steps].map(steps => Array.from({length: steps}).map((v, i, a) => [radius * Math.cos(clockWiseStart + extend*i/(a.length-(includeLast?1:0))), radius * Math.sin(clockWiseStart + extend*i/(a.length-(includeLast?1:0)))])).pop(); } function pts2Edges(pts) { return pts.map((v, i, a) => [v, a[(i+1)%a.length]]); } function drawPath(turtle, pts) { return pts.forEach((pt, i) => turtle[i == 0? 'jump':'goto'](pt)); } function drawTour(turtle, pts) { return drawPath(turtle, pts.concat([pts[0]])); } function drawPoint(turtle, pt) { return drawTour(turtle, circlePoints(.5).map(p => add2(p, pt))); } function isInPolygon(edges, pt) { return edges.map(edge => intersect_info2(edge[0], sub2(edge[1], edge[0]), pt, [0, 300])).filter(ii => ii !== false && 0 <= ii[0] && ii[0] <= 1 && 0 < ii[1]).length % 2 == 1; } function bezier2(origin, relativeOriginControl, target, relativeTargetControl, steps) { return Array.from({length: steps + 1}, (v, idx) => { const t = idx/steps; const originControl = add2(origin, relativeOriginControl); const targetControl = add2(target, relativeTargetControl); const originDev = lerp2(origin, originControl, t); const secDev = lerp2(originControl, targetControl, t); const targetDev = lerp2(targetControl, target, t); const originPt = lerp2(originDev, secDev, t); const targetPt = lerp2(secDev, targetDev, t); return lerp2(originPt, targetPt, t); }); } function redistributePathLinear(path, steps) { const segments = path.map((v, i, arr) => [v, arr[(i+1)%arr.length], len2(sub2(v, arr[(i+1)%arr.length]))]); const last = segments.pop(); const length = segments.reduce((p, v) => p + v[2], 0); const stepLength = length/steps; let lengthLeft = stepLength; const result = [segments[0][0]]; while(segments.length > 0) { const segment = segments.shift(); const delta = lengthLeft - segment[2]; if(delta > 0) { lengthLeft = delta; continue; } if(delta === 0) { result.push(segment[1]); lengthLeft = stepLength; continue; } const newPoint = lerp2(segment[0], segment[1], lengthLeft / segment[2]); result.push(newPoint); segments.unshift([newPoint, segment[1], segment[2] - lengthLeft]); lengthLeft = stepLength; } if(result.length < steps + 1) result.push(last[0]); return result; }