Circle Packing + Drawing lines in certain range
Log in to post a comment.
// Forked from "Drawing Circles ⭕" by markknol // https://turtletoy.net/turtle/70cec84ef6 const pathInput = ` M-95,-42 C-95,-63 -50,-75 -33,-79 C25,-92 84,-85 99,-24 C105,-2 89,19 71,29 C57,37 43,37 28,40 C-9,46 -38,41 -45,0 C-46,-6 -47,-14 -46,-20 C-42,-41 -7,-47 11,-47 C44,-47 63,-31 78,-4 C85,8 90,20 88,34 C86,44 76,55 69,62 C57,74 42,79 27,85 C7,93 -14,92 -35,90 C-60,88 -83,76 -100,59`; // type=path const path = Path(pathInput); const turtle = new Turtle(); const circles = new Circles(); const randomOffset = 12.5;// min=0, max=50, step=0.5 const iterationsPerStep = 500; const circleRadius = 10.0; // min=4, max=50, step=0.25 const lineRange = 10; // min=1, max= 50, step=1 const steps = path.length() | 0; function walk(i) { let j = i / steps; const pos = path.p(j % 1); const t = 1 - (j / iterationsPerStep); const radius = lerp(0.01, circleRadius, t); const circle = [ pos[0]+range(-randomOffset, randomOffset), pos[1]+range(-randomOffset, randomOffset), radius ]; circles.insert(circle); if (i === steps*iterationsPerStep) { let p2,dx,dy,r; for(let p1 of circles.pts) for(let p2 of circles.pts) { if (p1 !== p2) { dx = p1[0]-p2[0], dy = p1[1]-p2[1], r = p1[2]+p2[2]; if (r > 1 && dx*dx+dy*dy < lineRange*lineRange) { turtle.jump(p1); turtle.goto(p2); } } } } return i < steps*iterationsPerStep; } // utils function clamp(v,min,max) { if (min>max) [min,max]=[max,min]; return v<min?min:(v>max?max:v); } function lerp(a,b,t) { return a + (b-a)*t; } function range(a,b) { return lerp(a,b,Math.random()); } // Circle pack by Mark Knol (@mknol) -- https://turtletoy.net/turtle/483faa0615 function Circles() { class Circles { constructor() { this.pts = []; } insert(p1) { let p2,dx,dy,r; for (let i=0,leni=this.pts.length;i<leni;i++) { p2 = this.pts[i]; dx = p1[0]-p2[0], dy = p1[1]-p2[1], r = p1[2]+p2[2]; if (dx*dx+dy*dy < r*r) { return false; } } this.pts.push(p1); return true; } get length() { return this.pts.length; } } return new Circles(); } //////////////////////////////////////////////////////////////// // Path utility code. Created by Reinder Nijhoff 2023 // Parses a single SVG path (only M, C and L statements are // supported). The p-method will return // [...position, ...derivative] for a normalized point t. // // https://turtletoy.net/turtle/46adb0ad70 //////////////////////////////////////////////////////////////// function Path(svg) { class MoveTo { constructor(p) { this.p0 = p; } p(t, s) { return [...this.p0, 1, 0]; } length() { return 0; } } class LineTo { constructor(p0, p1) { this.p0 = p0, this.p1 = p1; } p(t, s = 1) { const nt = 1 - t, p0 = this.p0, p1 = this.p1; return [ nt*p0[0] + t*p1[0], nt*p0[1] + t*p1[1], (p1[0] - p0[0]) * s, (p1[1] - p0[1]) * s, ]; } length() { const p0 = this.p0, p1 = this.p1; return Math.hypot(p0[0]-p1[0], p0[1]-p1[1]); } } class BezierTo { constructor(p0, c0, c1, p1) { this.p0 = p0, this.c0 = c0, this.c1 = c1, this.p1 = p1; } p(t, s = 1) { const nt = 1 - t, p0 = this.p0, c0 = this.c0, c1 = this.c1, p1 = this.p1; return [ nt*nt*nt*p0[0] + 3*t*nt*nt*c0[0] + 3*t*t*nt*c1[0] + t*t*t*p1[0], nt*nt*nt*p0[1] + 3*t*nt*nt*c0[1] + 3*t*t*nt*c1[1] + t*t*t*p1[1], (3*nt*nt*(c0[0]-p0[0]) + 6*t*nt*(c1[0]-c0[0]) + 3*t*t*(p1[0]-c1[0])) * s, (3*nt*nt*(c0[1]-p0[1]) + 6*t*nt*(c1[1]-c0[1]) + 3*t*t*(p1[1]-c1[1])) * s, ]; } length() { return this._length || ( this._length = Array.from({length:25}, (x, i) => this.p(i/25)).reduce( (a,c,i,v) => i > 0 ? a + Math.hypot(c[0]-v[i-1][0], c[1]-v[i-1][1]) : a, 0)); } } class Path { constructor(svg) { this.segments = []; this.parsePath(svg); } parsePath(svg) { const t = svg.match(/([0-9.-]+|[MLC])/g); for (let s, i=0; i<t.length;) { switch (t[i++]) { case 'M': this.add(new MoveTo(s=[t[i++],t[i++]])); break; case 'L': this.add(new LineTo(s, s=[t[i++],t[i++]])); break; case 'C': this.add(new BezierTo(s, [t[i++],t[i++]], [t[i++],t[i++]], s=[t[i++],t[i++]])); break; default: i++; } } } add(segment) { this.segments.push(segment); this._length = 0; } length() { return this._length || (this._length = this.segments.reduce((a,c) => a + c.length(), 0)); } p(t) { t = Math.max(Math.min(t, 1), 0) * this.length(); for (let l=0, i=0, sl=0; i<this.segments.length; i++, l+=sl) { sl = this.segments[i].length(); if (t > l && t <= l + sl) { return this.segments[i].p((t-l)/sl, sl/this.length()); } } return this.segments[Math.min(1, this.segments.length-1)].p(0); } } return new Path(svg); }