Pythagorean Tree IFS.
Log in to post a comment.
const shape = 0; // min=0, max=4, step=1 (Square, Bubble, Blur, Linear, Circle) const x_height = 0.1; // min=-1, max=1, step=0.01 const y_height = 0.5; // min=-1, max=1, step=0.01 const x_post = 0.5; // min=-100, max=100, step=1 const y_post = 0.5; // min=-100, max=100, step=1 Canvas.setpenopacity(-0.05); const turtle = new Turtle(); let x = 0; let y = 0; function toRadians (angle) { return angle * (Math.PI / 180); } function toDegrees (angle) { return angle * (180 / Math.PI); } function matrix_multiplication(m0, m1){ return [[m0[0][0]*m1[0][0] + m0[0][1]*m1[1][0], m0[0][0]*m1[0][1] + m0[0][1]*m1[1][1]], [m0[1][0]*m1[0][0] + m0[1][1]*m1[1][0], m0[1][0]*m1[0][1] + m0[1][1]*m1[1][1]]]; } function rotation_matrix(theta){ return [[Math.cos(toRadians(theta)), -Math.sin(toRadians(theta))], [Math.sin(toRadians(theta)), Math.cos(toRadians(theta))]]; } var left_angle = toDegrees(Math.atan(y_height/x_height)); var right_angle = -toDegrees(Math.atan(y_height/(1.0-x_height))); var left_length = Math.sqrt(Math.pow(x_height,2) + Math.pow(y_height, 2)); var right_length = Math.sqrt(Math.pow((1.0-x_height),2) + Math.pow(y_height, 2)); var left_x_offset = -0.5 - 0.5*Math.cos(toRadians(180 - 45 - left_angle))*Math.sqrt(2*Math.pow(left_length, 2)); var left_y_offset = -0.5 -0.5* Math.sin(toRadians(180 - 45 - left_angle))*Math.sqrt(2*Math.pow(left_length, 2)); var right_x_offset = 0.5 + Math.cos(toRadians(180 - 45 + right_angle))*0.5*Math.sqrt(2*Math.pow(right_length, 2)); var right_y_offset = -0.5 - Math.sin(toRadians(180 - 45 + right_angle))*0.5*Math.sqrt(2*Math.pow(right_length, 2)); var left_rotation_matrix = rotation_matrix(left_angle); var right_rotation_matrix = rotation_matrix(right_angle); var left_length_matrix = [[left_length, 0], [0, left_length]]; var right_length_matrix = [[right_length, 0], [0, right_length]]; var final_left_matrix = matrix_multiplication(left_rotation_matrix,left_length_matrix); var final_right_matrix = matrix_multiplication(right_rotation_matrix,right_length_matrix); let function_set = [[1.0, 0, 0, 1.0, 0, 0, 0.33], [final_left_matrix[0][0], final_left_matrix[0][1], final_left_matrix[1][0], final_left_matrix[1][1], left_x_offset, -left_y_offset, 0.33], [final_right_matrix[0][0], final_right_matrix[0][1], final_right_matrix[1][0], final_right_matrix[1][1], right_x_offset, -right_y_offset, 0.33]]; let shapes = ["Square", "Bubble", "Blur", "Linear", "Circle"]; let function_transforms = [shapes[shape], "Linear", "Linear"]; function linear(x,y){ return [x, y]; } function square(x, y){ var r1 = Math.random(); var r2 = Math.random(); return [(r1 - 0.5), (r2 - 0.5)]; } function bubble(x, y){ var r = 1.0; var multiplier = 4.0/(Math.pow(r,2.0) + 4.0); return [multiplier*x, multiplier*y]; } function blur(x, y){ var r1 = Math.random(); var r2 = Math.random(); return [r1*Math.cos(2*Math.PI*r2), r1*Math.sin(2*Math.PI*r2)]; } function circle(x, y){ var t = 2*Math.PI*Math.random(); var u = Math.random() + Math.random(); var r = u; if(u>1.0){ r = 2-u; } return [r*Math.cos(t), r*Math.sin(t)]; } function walk(i) { turtle.jump(x * 20 + x_post, - y * 20 + y_post); turtle.circle(.1); let r = Math.random(); let p_total = 0; for (let j = 0; j < function_set.length; j++) { let f = function_set[j]; p_total += f[6]; if (r < p_total) { // Use precomputed function lookup let next; switch (function_transforms[j]) { case "Square": next = square(x, y); break; case "Bubble": next = bubble(x, y); break; case "Blur": next = blur(x, y); break; case "Circle": next = circle(x, y); break; default: next = linear(x, y); } // Apply transformation matrix x = next[0] * f[0] + next[1] * f[1] + f[4]; y = next[0] * f[2] + next[1] * f[3] + f[5]; break; } } return i < 100000000; }