Pythagorean Tree IFS.
Log in to post a comment.
const shape = 0; // min=0, max=15, step=1 (Square, Bubble, Blur, Linear, Circle, Sin, Exponential, Swirl, Horseshoe, Polar, Handkerchief, Heart, Disc, Spiral, Diamond, Julia)
const x_height = 0.1; // min=-1, max=1, step=0.01
const y_height = 0.5; // min=-1, max=1, step=0.01
const x_post = 0.5; // min=-100, max=100, step=1
const y_post = 0.5; // min=-100, max=100, step=1
https://turtletoy.net/user/profile
Canvas.setpenopacity(-0.05);
const turtle = new Turtle();
let x = 0;
let y = 0;
function toRadians (angle) {
return angle * (Math.PI / 180);
}
function toDegrees (angle) {
return angle * (180 / Math.PI);
}
function matrix_multiplication(m0, m1){
return [[m0[0][0]*m1[0][0] + m0[0][1]*m1[1][0], m0[0][0]*m1[0][1] + m0[0][1]*m1[1][1]], [m0[1][0]*m1[0][0] + m0[1][1]*m1[1][0], m0[1][0]*m1[0][1] + m0[1][1]*m1[1][1]]];
}
function rotation_matrix(theta){
return [[Math.cos(toRadians(theta)), -Math.sin(toRadians(theta))], [Math.sin(toRadians(theta)), Math.cos(toRadians(theta))]];
}
var left_angle = toDegrees(Math.atan(y_height/x_height));
var right_angle = -toDegrees(Math.atan(y_height/(1.0-x_height)));
var left_length = Math.sqrt(Math.pow(x_height,2) + Math.pow(y_height, 2));
var right_length = Math.sqrt(Math.pow((1.0-x_height),2) + Math.pow(y_height, 2));
var left_x_offset = -0.5 - 0.5*Math.cos(toRadians(180 - 45 - left_angle))*Math.sqrt(2*Math.pow(left_length, 2));
var left_y_offset = -0.5 -0.5* Math.sin(toRadians(180 - 45 - left_angle))*Math.sqrt(2*Math.pow(left_length, 2));
var right_x_offset = 0.5 + Math.cos(toRadians(180 - 45 + right_angle))*0.5*Math.sqrt(2*Math.pow(right_length, 2));
var right_y_offset = -0.5 - Math.sin(toRadians(180 - 45 + right_angle))*0.5*Math.sqrt(2*Math.pow(right_length, 2));
var left_rotation_matrix = rotation_matrix(left_angle);
var right_rotation_matrix = rotation_matrix(right_angle);
var left_length_matrix = [[left_length, 0], [0, left_length]];
var right_length_matrix = [[right_length, 0], [0, right_length]];
var final_left_matrix = matrix_multiplication(left_rotation_matrix,left_length_matrix);
var final_right_matrix = matrix_multiplication(right_rotation_matrix,right_length_matrix);
let function_set = [[1.0, 0, 0, 1.0, 0, 0, 0.33],
[final_left_matrix[0][0], final_left_matrix[0][1], final_left_matrix[1][0], final_left_matrix[1][1], left_x_offset, -left_y_offset, 0.33],
[final_right_matrix[0][0], final_right_matrix[0][1], final_right_matrix[1][0], final_right_matrix[1][1], right_x_offset, -right_y_offset, 0.33]];
let shapes = ["Square", "Bubble", "Blur", "Linear", "Circle", "Sin", "Exponential", "Swirl", "Horseshoe", "Polar", "Handkerchief", "Heart", "Disc", "Spiral", "Diamond", "Julia"];
let function_transforms = [shapes[shape], "Linear", "Linear"];
function linear(x,y){
return [x, y];
}
function square(x, y){
var r1 = Math.random();
var r2 = Math.random();
return [(r1 - 0.5), (r2 - 0.5)];
}
function bubble(x, y){
var r = 1.0;
var multiplier = 4.0/(Math.pow(r,2.0) + 4.0);
return [multiplier*x, multiplier*y];
}
function blur(x, y){
var r1 = Math.random();
var r2 = Math.random();
return [r1*Math.cos(2*Math.PI*r2), r1*Math.sin(2*Math.PI*r2)];
}
function circle(x, y){
var t = 2*Math.PI*Math.random();
var u = Math.random() + Math.random();
var r = u;
if(u>1.0){
r = 2-u;
}
return [r*Math.cos(t), r*Math.sin(t)];
}
function sin_f(x, y) {
return [Math.sin(x), Math.sin(y)];
}
function exponential(x, y) {
let exp = Math.exp(x - 1);
return [exp * Math.cos(Math.PI * y), exp * Math.sin(Math.PI * y)];
}
function swirl(x, y) {
let r2 = x * x + y * y;
return [x * Math.sin(r2) - y * Math.cos(r2), x * Math.cos(r2) + y * Math.sin(r2)];
}
function horseshoe(x, y) {
let r = Math.sqrt(x * x + y * y);
return [(x - y) * (x + y) / r, 2 * x * y / r];
}
function polar(x, y) {
let r = Math.sqrt(x * x + y * y);
let theta = Math.atan2(y, x);
return [theta / Math.PI, r - 1];
}
function handkerchief(x, y) {
let r = Math.sqrt(x * x + y * y);
let theta = Math.atan2(y, x);
return [r * Math.sin(theta + r), r * Math.cos(theta - r)];
}
function heart(x, y) {
let r = Math.sqrt(x * x + y * y);
let theta = Math.atan2(y, x);
return [r * Math.sin(theta * r), -r * Math.cos(theta * r)];
}
function disc(x, y) {
let r = Math.sqrt(x * x + y * y);
let theta = Math.atan2(y, x);
return [theta / Math.PI * Math.sin(Math.PI * r), theta / Math.PI * Math.cos(Math.PI * r)];
}
function spiral(x, y) {
let r = Math.sqrt(x * x + y * y);
let theta = Math.atan2(y, x);
return [(1 / r) * (Math.cos(theta) + Math.sin(r)), (1 / r) * (Math.sin(theta) - Math.cos(r))];
}
function diamond(x, y) {
let r = Math.sqrt(x * x + y * y);
let theta = Math.atan2(y, x);
return [Math.sin(theta) * Math.cos(r), Math.cos(theta) * Math.sin(r)];
}
function julia(x, y) {
let r = Math.sqrt(x * x + y * y);
let theta = Math.atan2(y, x);
let omega = Math.random() < 0.5 ? theta / 2 : theta / 2 + Math.PI;
return [Math.sqrt(r) * Math.cos(omega), Math.sqrt(r) * Math.sin(omega)];
}
function walk(i) {
turtle.jump(x * 20 + x_post, - y * 20 + y_post);
turtle.circle(.1);
let r = Math.random();
let p_total = 0;
for (let j = 0; j < function_set.length; j++) {
let f = function_set[j];
p_total += f[6];
if (r < p_total) {
// Use precomputed function lookup
let next;
switch (function_transforms[j]) {
case "Square": next = square(x, y); break;
case "Bubble": next = bubble(x, y); break;
case "Blur": next = blur(x, y); break;
case "Circle": next = circle(x, y); break;
case "Sin": next = sin_f(x, y); break;
case "Exponential": next = exponential(x, y); break;
case "Swirl": next = swirl(x, y); break;
case "Horseshoe": next = horseshoe(x, y); break;
case "Polar": next = polar(x, y); break;
case "Handkerchief": next = handkerchief(x, y); break;
case "Heart": next = heart(x, y); break;
case "Disc": next = disc(x, y); break;
case "Spiral": next = spiral(x, y); break;
case "Diamond": next = diamond(x, y); break;
case "Julia": next = julia(x, y); break;
default: next = linear(x, y);
}
// Apply transformation matrix
x = next[0] * f[0] + next[1] * f[1] + f[4];
y = next[0] * f[2] + next[1] * f[3] + f[5];
break;
}
}
return i < 10000000;
}