const turtle = new Turtle(); const maxDepth = 6; // min=1, max=10, step=1 const splitChance = 0.8; //min=0, max=1, step=0.001 const addHatching = 1; // min=0, max=1, step=1 (No, Yes) const firstCubeSize = 140; // min=1, max=200, step=0.5 const polys = new Polygons(); class Hexagon { constructor(center, radius, positive, depth) { this.center = center; this.radius = radius; this.positive = positive; this.depth = depth; this.points = [this.center]; for (let i=0; i<6; i++) { this.points.push(add(this.center, [radius*Math.sin(Math.PI*i/3), -radius*Math.cos(Math.PI*i/3)])); } } getPolygons() { const p = this.points; if (this.positive) { return [[p[1],p[2],p[0],p[6]], [p[0],p[2],p[3],p[4]], [p[0],p[4],p[5],p[6]]]; } else { return [[p[0],p[3],p[4],p[5]], [p[1],p[0],p[5],p[6]], [p[1],p[2],p[3],p[0]]]; } } getSpawnPoints() { const p = this.points, r = this.radius, d = this.depth; if (this.positive) { return [{center: p[1], depth: d+1, positive: true, radius: r / 2}, {center: p[3], depth: d+1, positive: true, radius: r / 2}, {center: p[5], depth: d+1, positive: true, radius: r / 2}, {center: p[0], depth: d+1, positive: false, radius: r / 2}]; } else { return [{center: p[2], depth: d+1, positive: false, radius: r / 2}, {center: p[4], depth: d+1, positive: false, radius: r / 2}, {center: p[6], depth: d+1, positive: false, radius: r / 2}, {center: p[0], depth: d+1, positive: true, radius: r / 2}]; } } } const hexagon = new Hexagon([0,0], firstCubeSize, true, 0); const hexagons = []; const pool = [hexagon]; do { const h = pool.shift(); hexagons.push(h); const spawn = h.getSpawnPoints(); spawn.forEach(p => { if (p.depth < maxDepth && (Math.random() < splitChance / (1 + p.depth*0.05) || p.depth < 2)) { pool.push(new Hexagon(p.center, p.radius, p.positive, p.depth)); } }); } while(pool.length); hexagons.reverse(); // The walk function will be called until it returns false. function walk(i) { const ps = hexagons[i].getPolygons(); ps.forEach((p, i) => { const poly = polys.create(); poly.addPoints(...p); poly.addOutline(); if (i==1 && addHatching) { poly.addHatching(-Math.PI/4, .5); } polys.draw(turtle, poly); }) return i < hexagons.length - 1; } // // 2D Vector math // function cross(a, b) { return a[0]*b[1]-a[1]*b[0]; } function equal(a,b) { return .001>dist_sqr(a,b); } function scale(a,b) { return [a[0]*b,a[1]*b]; } function add(a,b) { return [a[0]+b[0],a[1]+b[1]]; } function sub(a,b) { return [a[0]-b[0],a[1]-b[1]]; } function dot(a,b) { return a[0]*b[0]+a[1]*b[1]; } function dist_sqr(a,b) { return (a[0]-b[0])**2+(a[1]-b[1])**2; } function dist(a,b) { return Math.sqrt(dist_sqr(a,b)); } function length(a) { return Math.sqrt(dot(a,a)); } function normalize(a) { return scale(a, 1/length(a)); } function lerp(a,b,t) { return [a[0]*(1-t)+b[0]*t,a[1]*(1-t)+b[1]*t]; } function rotate(v, center, angle) { const x = v[0] - center[0], y = v[1] - center[1]; return [x * Math.cos(angle) - y * Math.sin(angle) + center[0], x * Math.sin(angle) + y * Math.cos(angle) + center[1]]; } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; }