Only a triangular section of the turtle is 'writeable'. The contents of that triangle is then rotated and mirrored in the way a Kaleidoscope does.
Log in to post a comment.
const mirrors = 4; //min=2 max=50 step=1 const circleChance = .75; //min=0 max=1 step=.01 // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(-.7); // Global code will be evaluated once. const turtle = new Kaleidoscope(0, 0, mirrors); function rot2(a) { return [Math.cos(a), -Math.sin(a), Math.sin(a), Math.cos(a)]; } function trans2(m, a) { return [m[0]*a[0]+m[2]*a[1], m[1]*a[0]+m[3]*a[1]]; } // The walk function will be called until it returns false. function walk(i) { if(i % 20 == 0) { const newY = Math.random() * 50; turtle.jump(trans2(rot2(Math.PI / mirrors), [ 0, Math.random() * 50 ])); } if(Math.random() < circleChance) { turtle.circle(Math.random() * 30); } else { turtle.forward(Math.random() * 50); turtle.right(Math.random() * 360); } return i < 100; } function Kaleidoscope(x, y, mirrors = 4) { function rot2(a) { return [Math.cos(a), -Math.sin(a), Math.sin(a), Math.cos(a)]; } function trans2(m, a) { return [m[0]*a[0]+m[2]*a[1], m[1]*a[0]+m[3]*a[1]]; } function segment_intersect2(a,b,d,c) { const e=(c[1]-d[1])*(b[0]-a[0])-(c[0]-d[0])*(b[1]-a[1]); if(0==e)return false; c=((c[0]-d[0])*(a[1]-d[1])-(c[1]-d[1])*(a[0]-d[0]))/e; d=((b[0]-a[0])*(a[1]-d[1])-(b[1]-a[1])*(a[0]-d[0]))/e; return 0<=c&&1>=c&&0<=d&&1>=d?[a[0]+c*(b[0]-a[0]),a[1]+c*(b[1]-a[1])]:false; } function pointInTriangle(pt, ...v) { const signFn = (p1, p2, p3) => (p1[0] - p3[0]) * (p2[1] - p3[1]) - (p2[0] - p3[0]) * (p1[1] - p3[1]); const signs = v.map((v, i, arr) => signFn(pt, v, arr[(i+1)%arr.length])); return !(signs.reduce((p, c) => p || c < 0, false) && signs.reduce((p, c) => p || c > 0, false)); } class Kaleidoscope extends Turtle { constructor(x, y, n = 4) { super(x, y); this.boundaries = [[0,0], [0, 1000], trans2(rot2(2*Math.PI/(n*2)), [0,1000])]; const rotations = Array.from({length: n}).map((v, i) => { return (pt) => trans2(rot2(i * 2 * Math.PI / n), pt); }); const mirrors = rotations.map(r => (pt) => trans2([-1, 0, 0, 1], r(pt))); this.transforms = [...rotations, ...mirrors]; this.cur = this.pos(); this.curIn = this.inSegment(this.cur); this.turtle = new Turtle(x, y); } inSegment(pt) { return pointInTriangle(pt, ...this.boundaries); } goto(x, y) { const target = Array.isArray(x)? x: [x, y]; const isDown = this.isdown(); const targetIn = this.turtle === undefined? false: this.inSegment(target); if (isDown) { (() => { const bOne = segment_intersect2(this.cur, target, this.boundaries[0], this.boundaries[1]); const bTwo = segment_intersect2(this.cur, target, this.boundaries[0], this.boundaries[2]); debugger; let from = this.cur; let to = target; if(!this.curIn && !targetIn) { if(bOne === false && bTwo === false) return; from = bOne; to = bTwo; } else if(!this.curIn) { from = bOne === false? bTwo: bOne; } else if(!targetIn) { to = bOne === false? bTwo: bOne; } this.transforms.forEach(t => { this.turtle.jump(t(from)); this.turtle.goto(t(to)); }); })(); } this.cur = target; this.curIn = targetIn this.up(); super.goto(x, y); if(isDown) this.down(); } } return new Kaleidoscope(x, y, mirrors) }