Layered Truchet 🧅

Stacking tesselations with reduced tile size each layer

Log in to post a comment.

const seed = 'Change me, or leave empty for random each run'; //type=string
const bigTileSize = 120; //min=20 max=200 step=.5
const maxDepth = 5; //min=1 max=10 step=1
const perDepthLevel = 0; //min=0 max=1 step=1 (multiply tile count per column/row by depthMod; mind maxDepth for performance, increase tiles per row/column by depthMod)
const depthMod = 2; //min=1 max=10 step=1
const hatchDistanceStart = 0; //min=0 max=10 step=.01 Set to 0 to disable hatching
const hatchDistanceMulti = .2; //min=0 max=2 step=.01
const hatchDirectionStart = 1; //min=0 max=1 step=.01
const hatchDirectionMulti = .3; //min=0 max=1 step=.01
const padding = .08; //min=.01 max=.19 step=.01
const thickness = .09; //min=.01 max=.3 step=.01
const circleResolution = 6.3; //min=.1 max=10 step=.1

// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(1);

// Global code will be evaluated once.
turtlelib_init();
if(seed != '') { R.seed(seed); } else { R.seedRandom(); }
const turtle = new Turtle();
const polygons = new Polygons();

let tile = getTileInfo(polygons, turtle, bigTileSize, padding, thickness);

let ii = 0;
let gridSize = Math.ceil(200/bigTileSize);
let tileSize = bigTileSize;
let curDepth = 0;
// The walk function will be called until it returns false.
function walk(i) {
    const c = ii % gridSize;
    const r = ii / gridSize | 0;
    
    const at = V.sub(
        [(c+.5)*tileSize, (r+.5)*tileSize],
        [gridSize * tileSize / 2, gridSize * tileSize / 2]
    );
    
    const ht = tileSize / 2;
    if(-100 < at[0] + ht && at[0] - ht < 100 && -100 < at[1] + ht && at[1] - ht < 100) {
        drawTile(polygons, turtle, tile, at, Math.random() < .5, curDepth);
    }

    ii++;
    if(ii == gridSize**2) {
        curDepth++;
        if(curDepth >= maxDepth) {
            return false;
        }
        switch(perDepthLevel) {
            case 0:
                gridSize *= 2;
                tileSize /= 2;
                break;
            case 1:
                gridSize+=depthMod;
                tileSize = 200/gridSize;
                break;                
        }
        ii = 0;
        tile = getTileInfo(polygons, turtle, tileSize, padding, thickness);
    }
    
    return true;
}

function drawTile(polygons, turtle, tile, at, mirror = false, depth = 1) {
    const r = (pt) => [pt[0], -pt[1]];
    const [segments, polygonsPts] = tile;
    const segp = polygons.create();
    segp.addSegments(...segments.map(pt => V.add(mirror?r(pt):pt, at)));
    polygons.draw(turtle, segp);
    
    polygonsPts.forEach(ppts => {
        const p = polygons.create();
        p.addPoints(...ppts.map(pt => V.add(mirror?r(pt):pt, at)));
        if(hatchDistanceStart > 0) {
            p.addHatching(Math.PI * (hatchDirectionStart + hatchDirectionMulti * (depth+1)), Math.max(.1, hatchDistanceStart - hatchDistanceMulti * depth));
        }
        polygons.draw(turtle, p);
    });
}

function getTileInfo(polygons, turtle, size, pad = 1/12, thick = 1/6) {
    const square = [[-.5, -.5], [.5, -.5], [.5, .5], [-.5, .5]];
    const thisSquare = square.map(pt => V.scale(pt, size));
    const outerOutlineSquare = square.map(pt => V.scale(pt, size * (1-pad)));
    const innerOutlineSquare = square.map(pt => V.scale(pt, size * (1-pad-thick)));
    
    const rInner = size * (.5-thick/2);
    const rOuter = size * (.5+thick/2);
    const ptsInner = [];
    const ptsOuter = [];
    const steps = (rOuter * circleResolution / 10 | 0) + 1;
    for(let i = 0; i <= steps; i++) {
        ptsInner.push([
            rInner * Math.cos(Math.PI/2*i/steps) - size/2,
            rInner * Math.sin(Math.PI/2*i/steps) - size/2
        ]);
        ptsOuter.push([
            rOuter * Math.cos(Math.PI/2*i/steps) - size/2,
            rOuter * Math.sin(Math.PI/2*i/steps) - size/2
        ]);
    }
    
    //find intersections
    const [innerCircleI1, innerCircleIs1] = findIntersections(ptsInner, [outerOutlineSquare[0], outerOutlineSquare[1]]);
    const [innerCircleI2, innerCircleIs2] = findIntersections(ptsInner, [innerOutlineSquare[0], innerOutlineSquare[1]]);
    const [outerCircleI1, outerCircleIs1] = findIntersections(ptsOuter, [outerOutlineSquare[0], outerOutlineSquare[1]]);
    const [outerCircleI2, outerCircleIs2] = findIntersections(ptsOuter, [innerOutlineSquare[0], innerOutlineSquare[1]]);
    const [innerCircleI3, innerCircleIs3] = [Math.max(0, ptsInner.length - innerCircleI2 - 2), [innerCircleIs2[1], innerCircleIs2[0]]];
    const [innerCircleI4, innerCircleIs4] = [Math.max(0, ptsInner.length - innerCircleI1 - 2), [innerCircleIs1[1], innerCircleIs1[0]]];
    const [outerCircleI3, outerCircleIs3] = [Math.max(0, ptsOuter.length - outerCircleI2 - 2), [outerCircleIs2[1], outerCircleIs2[0]]];
    const [outerCircleI4, outerCircleIs4] = [Math.max(0, ptsOuter.length - outerCircleI1 - 2), [outerCircleIs1[1], outerCircleIs1[0]]];
    
    //inner circle (top to left (clockwise)) sections
    const innerCirclePath1 = pad == 0? []: ptsInner.slice(0, innerCircleI1 + 1);
    const innerCircleJunction1 = ptsInner.slice(innerCircleI1 + 1, innerCircleI2 + 1);
    const innerCirclePath2 = ptsInner.slice(innerCircleI2 + 1, innerCircleI3 + 1);
    const innerCircleJunction2 = ptsInner.slice(innerCircleI3 + 1, innerCircleI4 + 1);
    const innerCirclePath3 = pad == 0? []: ptsInner.slice(innerCircleI4 + 1);

    //outer circle (top to left (clockwise)) sections
    const outerCirclePath1 = pad == 0? []: ptsOuter.slice(0, outerCircleI1 + 1);
    const outerCircleJunction1 = ptsOuter.slice(outerCircleI1 + 1, outerCircleI2 + 1);
    const outerCirclePath2 = ptsOuter.slice(outerCircleI2 + 1, outerCircleI3 + 1);
    const outerCircleJunction2 = ptsOuter.slice(outerCircleI3 + 1, outerCircleI4 + 1);
    const outerCirclePath3 = pad == 0? []: ptsOuter.slice(outerCircleI4 + 1);

    const pathToSegments = (path) => {
        const segs = path.flatMap((e, i, a) => [e, i == a.length - 1? null: a[i+1]]);
        segs.pop();
        segs.pop();
        return segs;
    }

    const topleftCircleSegments = [
        //outer
        ...pathToSegments([...outerCirclePath1, outerCircleIs1]),
        ...pathToSegments([outerCircleIs2, ...outerCirclePath2, outerCircleIs3]),
        ...pathToSegments([outerCircleIs4, ...outerCirclePath3]),
        //inner
        ...pathToSegments([...innerCirclePath1, innerCircleIs1]),
        ...pathToSegments([innerCircleIs2, ...innerCirclePath2, innerCircleIs3]),
        ...pathToSegments([innerCircleIs4, ...innerCirclePath3])
    ];
    
    const squareSegments = [
        //outer
        ...pathToSegments([innerCircleIs4, outerOutlineSquare[0], innerCircleIs1]),
        ...pathToSegments([outerCircleIs1, outerOutlineSquare[1], V.scale(outerCircleIs4, -1)]),
        ...pathToSegments([V.scale(innerCircleIs4, -1), outerOutlineSquare[2], V.scale(innerCircleIs1, -1)]),
        ...pathToSegments([V.scale(outerCircleIs1, -1), outerOutlineSquare[3], outerCircleIs4]),
        //inner
        ...pathToSegments([innerCircleIs3, innerOutlineSquare[0], innerCircleIs2]),
        ...pathToSegments([outerCircleIs2, innerOutlineSquare[1], V.scale(outerCircleIs3, -1)]),
        ...pathToSegments([V.scale(innerCircleIs3, -1), innerOutlineSquare[2], V.scale(innerCircleIs2, -1)]),
        ...pathToSegments([V.scale(outerCircleIs2, -1), innerOutlineSquare[3], outerCircleIs3]),
    ];

    const segments = [
        ...topleftCircleSegments,
        ...topleftCircleSegments.map(pt => V.scale(pt, -1)),
        ...squareSegments
    ];
    
    const circlePolygonPts = [...ptsInner, ...ptsOuter.map(p=>p).reverse()];
    
    const polygonsPts = [
        ...outerOutlineSquare.map((e, i, a) => [
            a[i],
            a[(i+1)%a.length],
            ...(i%2==0? [
                [a[(i+1)%a.length][0], innerOutlineSquare[(i+1)%a.length][1]],
                [a[i][0], innerOutlineSquare[i][1]]
            ]: [
                [innerOutlineSquare[(i+1)%a.length][0], a[(i+1)%a.length][1]],
                [innerOutlineSquare[i][0], a[i][1]]
            ])
        ]),
        circlePolygonPts,
        circlePolygonPts.map(pt => V.scale(pt, -1))
    ];
    
    return [segments, polygonsPts];

    function findIntersections(path, line) {
        for(let i = 0; i < path.length - 1; i++) {
            const is = Intersection.segment(path[i], path[i+1], ...line, true, false);
            if(is !== false) {
                return [i, is];
            }
        }
        return [false, false];
    }
}

// Below is automatically maintained by Turtlelib 1.0
// Changes below this comment might interfere with its correct functioning.
function turtlelib_init() {
	turtlelib_ns_c6665b0e9b_Jurgen_Vector_Math();
	turtlelib_ns_80dcba45dd_Jurgen_Polygons();
	turtlelib_ns_c5f8fa95ed_Jurgen_Intersection();
	turtlelib_ns_13b81fd40e_Jurgen_Randomness();
}
// Turtlelib Jurgen Vector Math v 4 - start - {"id":"c6665b0e9b","package":"Jurgen","name":"Vector Math","version":"4"}
function turtlelib_ns_c6665b0e9b_Jurgen_Vector_Math() {
/////////////////////////////////////////////////////////
// Vector functions - Created by Jurgen Westerhof 2024 //
/////////////////////////////////////////////////////////
class Vector {
    static add  (a,b) { return a.map((v,i)=>v+b[i]); }
    static sub  (a,b) { return a.map((v,i)=>v-b[i]); }
    static mul  (a,b) { return a.map((v,i)=>v*b[i]); }
    static div  (a,b) { return a.map((v,i)=>v/b[i]); }
    static scale(a,s) { return a.map(v=>v*s); }

    static det(m)                { return m.length == 1? m[0][0]: m.length == 2 ? m[0][0]*m[1][1]-m[0][1]*m[1][0]: m[0].reduce((r,e,i) => r+(-1)**(i+2)*e*this.det(m.slice(1).map(c => c.filter((_,j) => i != j))),0); }
    static angle(a)              { return Math.PI - Math.atan2(a[1], -a[0]); } //compatible with turtletoy heading
    static rot2d(angle)          { return [[Math.cos(angle), -Math.sin(angle)], [Math.sin(angle), Math.cos(angle)]]; }
    static rot3d(yaw,pitch,roll) { return [[Math.cos(yaw)*Math.cos(pitch), Math.cos(yaw)*Math.sin(pitch)*Math.sin(roll)-Math.sin(yaw)*Math.cos(roll), Math.cos(yaw)*Math.sin(pitch)*Math.cos(roll)+Math.sin(yaw)*Math.sin(roll)],[Math.sin(yaw)*Math.cos(pitch), Math.sin(yaw)*Math.sin(pitch)*Math.sin(roll)+Math.cos(yaw)*Math.cos(roll), Math.sin(yaw)*Math.sin(pitch)*Math.cos(roll)-Math.cos(yaw)*Math.sin(roll)],[-Math.sin(pitch), Math.cos(pitch)*Math.sin(roll), Math.cos(pitch)*Math.cos(roll)]]; }
    static trans(matrix,a)       { return a.map((v,i) => a.reduce((acc, cur, ci) => acc + cur * matrix[ci][i], 0)); }
    //Mirror vector a in a ray through [0,0] with direction mirror
    static mirror2d(a,mirror)    { return [Math.atan2(...mirror)].map(angle => this.trans(this.rot2d(angle), this.mul([-1,1], this.trans(this.rot2d(-angle), a)))).pop(); }

    static equals(a,b)   { return !a.some((e, i) => e != b[i]); }
    static approx(a,b,p) { return this.len(this.sub(a,b)) < (p === undefined? .001: p); }
    static norm  (a)     { return this.scale(a,1/this.len(a)); }
    static len   (a)     { return Math.hypot(...a); }
    static lenSq (a)     { return a.reduce((a,c)=>a+c**2,0); }
    static lerp  (a,b,t) { return a.map((v, i) => v*(1-t) + b[i]*t); }
    static dist  (a,b)   { return Math.hypot(...this.sub(a,b)); }
    
    static dot  (a,b)   { return a.reduce((a,c,i) => a+c*b[i], 0); }
    static cross(...ab) { return ab[0].map((e, i) => ab.map(v => v.filter((ee, ii) => ii != i))).map((m,i) => (i%2==0?-1:1)*this.det(m)); }
    
    static clamp(a,min,max) { return a.map((e,i) => Math.min(Math.max(e, min[i]), max[i])) };
    static rotateClamp(a,min,max) { return a.map((e,i) => {const d = max[i]-min[i];if(d == 0) return min[i];while(e < min[i]) { e+=d; }while(e > max[i]) { e-=d; }return e;});
    }
}
this.V = Vector;
}
// Turtlelib Jurgen Vector Math v 4 - end
// Turtlelib Jurgen Polygons v 1 - start - {"id":"80dcba45dd","package":"Jurgen","name":"Polygons","version":"1"}
function turtlelib_ns_80dcba45dd_Jurgen_Polygons() {
////////////////////////////////////////////////////////////////
// Polygon Clipping utility code - Created by Reinder Nijhoff 2019
// (Polygon binning by Lionel Lemarie 2021) https://turtletoy.net/turtle/95f33bd383
// (Delegated Hatching by Jurgen Westerhof 2024) https://turtletoy.net/turtle/d068ad6040
// (Deferred Polygon Drawing by Jurgen Westerhof 2024) https://turtletoy.net/turtle/6f3d2bc0b5
// https://turtletoy.net/turtle/a5befa1f8d
//
// const polygons = new Polygons();
// const p = polygons.create();
// polygons.draw(turtle, p);
// polygons.list();
// polygons.startDeferSession();
// polygons.stopDeferring();
// polygons.finalizeDeferSession(turtle);
//
// p.addPoints(...[[x,y],]);
// p.addSegments(...[[x,y],]);
// p.addOutline();
// p.addHatching(angle, distance); OR p.addHatching(HatchObject); where HatchObject has a method 'hatch(PolygonClass, thisPolygonInstance)'
// p.inside([x,y]);
// p.boolean(polygon, diff = true);
// p.segment_intersect([x,y], [x,y], [x,y], [x,y]);
////////////////////////////////////////////////////////////////
function Polygons(){const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{constructor(){this.cp=[],this.dp=[],this.aabb=[]}addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]}addSegments(...t){t.forEach(t=>this.dp.push(t))}addOutline(){for(let t=0,s=this.cp.length;t<s;t++)this.dp.push(this.cp[t],this.cp[(t+1)%s])}draw(t){for(let s=0,e=this.dp.length;s<e;s+=2)t.jump(this.dp[s]),t.goto(this.dp[s+1])}addHatching(t, s) {if(typeof t == 'object') return t.hatch(n, this);const e=new n;e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t);for(let t=.5;t<150/s;t++) {e.dp.push([h*t+i,o*t-a],[h*t-i,o*t+a]);e.dp.push([-h*t+i,-o*t-a],[-h*t-i,-o*t+a]);}e.boolean(this,!1);this.dp=[...this.dp,...e.dp]}inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s}boolean(t,s=!0){const e=[];for(let n=0,h=this.dp.length;n<h;n+=2){const h=this.dp[n],o=this.dp[n+1],a=[];for(let s=0,e=t.cp.length;s<e;s++){const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]);!1!==n&&a.push(n)}if(0===a.length)s===!t.inside(h)&&e.push(h,o);else{a.push(h,o);const n=o[0]-h[0],i=o[1]-h[1];a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i);for(let n=0;n<a.length-1;n++)(a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001&&s===!t.inside([(a[n][0]+a[n+1][0])/2,(a[n][1]+a[n+1][1])/2])&&e.push(a[n],a[n+1])}}return(this.dp=e).length>0}segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]}};const y=function(n,j=[]){const h={},o=200/s;for(var a=0;a<s;a++){const c=a*o-100,r=[0,c,200,c+o];if(!(n[3]<r[1]||n[1]>r[3]))for(var i=0;i<s;i++){const c=i*o-100;r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{const e=t[s];n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||j.includes(s)||(h[s]=1)})}}return Array.from(Object.keys(h),s=>t[s])};return{list:()=>t,create:()=>new n,draw:(n,h,o=!0)=>{rpl=y(h.aabb, this.dei === undefined? []: Array.from({length: t.length - this.dei}).map((e, i) => this.dsi + i));for(let t=0;t<rpl.length&&h.boolean(rpl[t]);t++);const td=n.isdown();if(this.dsi!==undefined&&this.dei===undefined)n.pu();h.draw(n),o&&function(n){t.push(n);const h=t.length-1,o=200/s;e.forEach((t,e)=>{const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o];c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h)})}(h);if(td)n.pd();},startDeferSession:()=>{if(this.dei!==undefined)throw new Error('Finalize deferring before starting new session');this.dsi=t.length;},stopDeferring:()=>{if(this.dsi === undefined)throw new Error('Start deferring before stopping');this.dei=t.length;},finalizeDeferSession:(n)=>{if(this.dei===undefined)throw new Error('Stop deferring before finalizing');for(let i=this.dsi;i<this.dei;i++) {rpl = y(t[i].aabb,Array.from({length:this.dei-this.dsi+1}).map((e,j)=>i+j));for(let j=0;j<rpl.length&&t[i].boolean(rpl[j]);j++);t[i].draw(n);}this.dsi=undefined;this.dei=undefined;}}}
this.Polygons = Polygons;
}
// Turtlelib Jurgen Polygons v 1 - end
// Turtlelib Jurgen Intersection v 4 - start - {"id":"c5f8fa95ed","package":"Jurgen","name":"Intersection","version":"4"}
function turtlelib_ns_c5f8fa95ed_Jurgen_Intersection() {
///////////////////////////////////////////////////////////////
// Intersection functions - Created by Jurgen Westerhof 2024 //
///////////////////////////////////////////////////////////////
class Intersection {
    //a-start, a-direction, b-start, b-direction
    //returns false on no intersection or [[intersection:x,y], scalar a-direction, scalar b-direction
    static info(as, ad, bs, bd) { const d = V.sub(bs, as), det = -V.det([bd, ad]); if(det === 0) return false; const res = [V.det([d, bd]) / det, V.det([d, ad]) / det]; return [V.add(as, V.scale(ad, res[0])), ...res]; }
    static ray(a, b, c, d) { return this.info(a, b, c, d); }
    static segment(a,b,c,d, inclusiveStart = true, inclusiveEnd = true) { const i = this.info(a, V.sub(b, a), c, V.sub(d, c)); return i === false? false: ( (inclusiveStart? 0<=i[1] && 0<=i[2]: 0<i[1] && 0<i[2]) && (inclusiveEnd?   i[1]<=1 && i[2]<=1: i[1]<1 && i[2]<1) )?i[0]:false;}
    static tour(tour, segmentStart, segmentDirection) { return tour.map((e, i, a) => [i, this.info(e, V.sub(a[(i+1)%a.length], e), segmentStart, segmentDirection)]).filter(e => e[1] !== false && 0 <= e[1][1] && e[1][1] <= 1).filter(e => 0 <= e[1][2]).map(e => ({position: e[1][0],tourIndex: e[0],tourSegmentPortion: e[1][1],segmentPortion: e[1][2],}));}
    static inside(tour, pt) { return tour.map((e,i,a) => this.segment(e, a[(i+1)%a.length], pt, [Number.MAX_SAFE_INTEGER, 0], true, false)).filter(e => e !== false).length % 2 == 1; }
    static circles(centerA, radiusA, centerB, radiusB) {const result = {intersect_count: 0,intersect_occurs: true,one_is_in_other: false,are_equal: false,point_1: [null, null],point_2: [null, null],};const dx = centerB[0] - centerA[0];const dy = centerB[1] - centerA[1];const dist = Math.hypot(dy, dx);if (dist > radiusA + radiusB) {result.intersect_occurs = false;}if (dist < Math.abs(radiusA - radiusB) && !N.approx(dist, Math.abs(radiusA - radiusB))) {result.intersect_occurs = false;result.one_is_in_other = true;}if (V.approx(centerA, centerB) && radiusA === radiusB) {result.are_equal = true;}if (result.intersect_occurs) {const centroid = (radiusA**2 - radiusB**2 + dist * dist) / (2.0 * dist);const x2 = centerA[0] + (dx * centroid) / dist;const y2 = centerA[1] + (dy * centroid) / dist;const prec = 10000;const h = (Math.round(radiusA**2 * prec)/prec - Math.round(centroid**2 * prec)/prec)**.5;const rx = -dy * (h / dist);const ry = dx * (h / dist);result.point_1 = [x2 + rx, y2 + ry];result.point_2 = [x2 - rx, y2 - ry];if (result.are_equal) {result.intersect_count = Infinity;} else if (V.equals(result.point_1, result.point_2)) {result.intersect_count = 1;} else {result.intersect_count = 2;}}return result;}
}
this.Intersection = Intersection;
}
// Turtlelib Jurgen Intersection v 4 - end
// Turtlelib Jurgen Randomness v 2 - start - {"id":"13b81fd40e","package":"Jurgen","name":"Randomness","version":"2"}
function turtlelib_ns_13b81fd40e_Jurgen_Randomness() {
///////////////////////////////////////////////////////////////
// Pseudorandom functions - Created by Jurgen Westerhof 2024 //
///////////////////////////////////////////////////////////////
class Random {
    static #apply(seed) {
        // Seedable random number generator by David Bau: http://davidbau.com/archives/2010/01/30/random_seeds_coded_hints_and_quintillions.html
        !function(a,b,c,d,e,f,g,h,i){function j(a){var b,c=a.length,e=this,f=0,g=e.i=e.j=0,h=e.S=[];for(c||(a=[c++]);d>f;)h[f]=f++;for(f=0;d>f;f++)h[f]=h[g=s&g+a[f%c]+(b=h[f])],h[g]=b;(e.g=function(a){for(var b,c=0,f=e.i,g=e.j,h=e.S;a--;)b=h[f=s&f+1],c=c*d+h[s&(h[f]=h[g=s&g+b])+(h[g]=b)];return e.i=f,e.j=g,c})(d)}function k(a,b){var c,d=[],e=typeof a;if(b&&"object"==e)for(c in a)try{d.push(k(a[c],b-1))}catch(f){}return d.length?d:"string"==e?a:a+"\0"}function l(a,b){for(var c,d=a+"",e=0;e<d.length;)b[s&e]=s&(c^=19*b[s&e])+d.charCodeAt(e++);return n(b)}function m(c){try{return o?n(o.randomBytes(d)):(a.crypto.getRandomValues(c=new Uint8Array(d)),n(c))}catch(e){return[+new Date,a,(c=a.navigator)&&c.plugins,a.screen,n(b)]}}function n(a){return String.fromCharCode.apply(0,a)}var o,p=c.pow(d,e),q=c.pow(2,f),r=2*q,s=d-1,t=c["seed"+i]=function(a,f,g){var h=[];f=1==f?{entropy:!0}:f||{};var o=l(k(f.entropy?[a,n(b)]:null==a?m():a,3),h),s=new j(h);return l(n(s.S),b),(f.pass||g||function(a,b,d){return d?(c[i]=a,b):a})(function(){for(var a=s.g(e),b=p,c=0;q>a;)a=(a+c)*d,b*=d,c=s.g(1);for(;a>=r;)a/=2,b/=2,c>>>=1;return(a+c)/b},o,"global"in f?f.global:this==c)};if(l(c[i](),b),g&&g.exports){g.exports=t;try{o=require("crypto")}catch(u){}}else h&&h.amd&&h(function(){return t})}(this,[],Math,256,6,52,"object"==typeof module&&module,"function"==typeof define&&define,"random");
        Math.seedrandom(seed);
    }
    static seedRandom() { this.#apply(new Date().getMilliseconds()); }
    static seedDaily() { this.#apply(new Date().toDateString()); }
    static seed(seed) { this.#apply(seed); }
    static getInt(min, max) { if(max == undefined) {max = min + 1; min = 0; } const [mi, ma] = [Math.min(min, max), Math.max(min, max)]; return (mi + Math.random() * (ma - mi)) | 0;}
    static get(min, max) {if(min == undefined) {return Math.random();}if(max == undefined) {max = min;min = 0;}const [mi, ma] = [Math.min(min, max), Math.max(min, max)];return mi + Math.random() * (ma - mi);}
    static fraction(whole) { return this.get(0, whole); }
    static getAngle(l = 1) { return l * this.get(0, 2*Math.PI); }
    // Standard Normal variate using Box-Muller transform.
    static getGaussian(mean=.5, stdev=.1) {const u = 1 - this.get(); /* Converting [0,1) to (0,1] */const v = this.get();const z = ( -2.0 * Math.log( u ) )**.5 * Math.cos( 2.0 * Math.PI * v );/* Transform to the desired mean and standard deviation: */return z * stdev + mean;}
    static skew(value, skew = 0) { /*skew values (from 0 to 1) by a skew from -1 to 1, respectively right and left skewed (resp more values to left or to right), 0 is not skewed*/return (skew < 0)? value - (this.skew(1-value, -skew) - (1-value)): Math.pow(value, 1-Math.abs(skew));}
    static getNormalDistributed(skew = 0) { /*skew values (from 0 to 1) by a skew from -1 to 1, respectively right and left skewed (resp more values to left or to right), 0 is not skewed*/let v = -1;while(v < 0 || 1 <= v) { v = this.getGaussian(.5, .1) };return this.skew(v, skew);}
}
this.R = Random;
}
// Turtlelib Jurgen Randomness v 2 - end