Growing tree.
Export to GIF to see it grow.
Log in to post a comment.
// LL 2021 const spawn_rate = 11; // min=1 max=50 step=1 const thickness = 0.2; // min=0.001 max=0.5 step=0.001 const max_life = 333; // min=1 max=500 step=1 const seed = 0; // min=0 max=100 step=1 const gravity = 0.1; // min=0 max=1 step=0.001 const variation = 90; // min=0 max=100 step=1 const max_variation = variation ? 1 / Math.pow(101-variation, 2.5) : 0; const offset_y = 90; const scale = 20; // min=1 max=50 step=1 const style = 2; // min=0 max=3 step=1 (Circles,Lines,Polygons (fast),Polygons (slow)) const circle_fill = 1; // min=0.05 max=1 step=0.05 const max_iterations = 1000; const draw_hatching = Math.random() < 0.5; var max_life_t = max_life; var new_particles = []; var particles_to_draw = []; Canvas.setpenopacity(1); const turtle = new Turtle(); console.clear(); var polygons = null; class Particle { constructor(x, y, px, py, radius, current_life, spawn) { this.x = x; this.y = y; this.px = px; this.py = py; this.radius = radius; this.current_life = current_life; this.spawn = spawn; this.rng_move = new RNG(seed*(39+current_life)); this.rng_spawn = new RNG(seed*(95+current_life)); } dup() { return new Particle(this.x, this.y, this.px, this.py, this.radius, this.current_life, this.spawn); } getDrawRadius() { return this.radius * Math.pow((1 - this.current_life / max_life_t), 2); } draw() { if (style == 0) { const radius = this.getDrawRadius(); turtle.jump(this.x * scale, (this.y-radius) * scale + offset_y); turtle.circle(radius * scale); for (var r = radius * scale - circle_fill; r > 0 && circle_fill < 1; r -= circle_fill) { turtle.jump(this.x * scale, this.y * scale - r + offset_y); turtle.circle(r) } } else if (style == 1) { const x = this.px * scale, y = this.py * scale + offset_y; if (getDistance(x, y, turtle.x(), turtle.y()) > 0.1) { turtle.jump(x, y); } turtle.goto(this.x * scale, this.y * scale + offset_y); } else { particles_to_draw.push(this.dup()); } } update() { var x = this.x, y = this.y, px = this.px, py = this.py; this.px = this.x; this.py = this.y; // Verlet const friction = 0.999; x += (x - px) * friction; y += (y - py) * friction; y += gravity / 100 * Math.pow(this.current_life / max_life_t, 5); const l = getDistance(x, y); const rx = rotX(x/l, y/l, Math.PI / 2); const ry = rotY(x/l, y/l, Math.PI / 2); x += rx * l * max_variation * (this.rng_move.nextFloat() - 0.5); y += ry * l * max_variation * (this.rng_move.nextFloat() - 0.5); var dx = x - this.x; var dy = y - this.y; const l2 = getDistance(dx, dy); const max_distance = 0.03; if (l2 > max_distance) { dx = dx / l2 * max_distance; dy = dy / l2 * max_distance; } this.x += dx; this.y += dy; const min_distance = 0.0001; //if (l2 < min_distance) this.current_life = max_life_t; //this.radius *= 0.993; if (this.radius < 0.0001) this.current_life = max_life_t; this.current_life++; const spawn_mod = Math.max(20, Math.floor(this.spawn * (1 - this.current_life / 300))); if ((this.current_life % spawn_mod) == 0) { const x = this.x; const y = this.y; const angle = 1 * (this.rng_spawn.nextFloat() - 0.5); const px = x - rotX(this.x - this.px, this.y - this.py, angle); const py = y - rotY(this.x - this.px, this.y - this.py, angle); const radius = this.radius; // * 0.9; const current_life = Math.round(this.current_life / (this.rng_spawn.nextFloat() * 0.2 + 0.8)); const spawn = this.spawn; //Math.floor(this.spawn * 0.5); return new Particle(x, y, px, py, radius, current_life, spawn); } return null; } isAlive() { return this.current_life < max_life_t; } } function rotX(x, y, a) { return Math.cos(a) * x - Math.sin(a) * y; } function rotY(x, y, a) { return Math.sin(a) * x + Math.cos(a) * y; } function getDistance(x1, y1, x2, y2) { if (x2 === undefined) x2 = 0; if (y2 === undefined) y2 = 0; const dx = x1 - x2, dy = y1 - y2; return Math.sqrt(dx*dx + dy*dy); } function initParticles() { polygons = new Polygons(); const x = 0; const y = 0; const px = x + 0; const py = y + 1; const radius = thickness; const current_life = 0; const spawn = Math.floor(1000/spawn_rate); new_particles = []; new_particles.push(new Particle(x, y, px, py, radius, current_life, spawn)); particles_to_draw = []; } function walk(i, t) { if (i==0) { //max_life_t = max_life * (Math.cos(t * Math.PI * 2) + 1) / 2; max_life_t = max_life * t; initParticles(); } var current_particle = null; while (true) { var early_exit = (i > max_iterations); if (current_particle === null || early_exit) { if (new_particles.length == 0 || early_exit) { console.log(`Final iteration count: ${i-1}`); return false; } current_particle = new_particles.shift(); } const new_particle = current_particle.update(); if (new_particle != null) new_particles.push(new_particle); if (current_particle.isAlive()) { current_particle.draw(); } else { if (particles_to_draw.length > 0) { const points = []; particles_to_draw.forEach( p => { const l = getDistance(p.x, p.y, p.px, p.py); const dx = rotX(p.x - p.px, p.y - p.py, Math.PI / 2) / l; const dy = rotY(p.x - p.px, p.y - p.py, Math.PI / 2) / l; const radius = p.getDrawRadius(); var p1x = (p.x + radius * dx) * scale ; var p1y = (p.y + radius * dy) * scale + offset_y; var p2x = (p.x - radius * dx) * scale; var p2y = (p.y - radius * dy) * scale + offset_y; points.push([p1x, p1y]); points.unshift([p2x, p2y]); }); if (style == 2) { turtle.jump(points[0]); points.forEach(p=>turtle.goto(p)); } else { const p1 = polygons.create(); p1.addPoints(...points); if (draw_hatching) p1.addHatching(-Math.PI/4, 1); p1.addOutline(); polygons.draw(turtle, p1, true); } particles_to_draw = []; } break; } } //sleep(100); return true; } //// function sleep(milliseconds) { const date = Date.now(); let currentDate = null; do { currentDate = Date.now(); } while (currentDate - date < milliseconds); } //// Random with seed function RNG(_seed) { // LCG using GCC's constants this.m = 0x80000000; // 2**31; this.a = 1103515245; this.c = 12345; this.state = _seed ? _seed : Math.floor(Math.random() * (this.m - 1)); } RNG.prototype.nextFloat = function() { // returns in range [0,1] this.state = (this.a * this.state + this.c) % this.m; return this.state / (this.m - 1); } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = 0.5; i < 150 / d; i++) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; }