Circle Packing + Drawing
Log in to post a comment.
const pathInput = ` M-98,11 C-98,15 -92,15 -91,18 C-87,25 -74,28 -68,34 C-57,45 -36,52 -23,59 C-18,61 -11,60 -6,63 C-1,66 18,64 25,66 C37,70 58,68 63,58 C72,40 60,26 44,18 C32,12 19,5 5,0 C4,-0 2,1 1,0 C-2,-2 -4,-5 -8,-6 C-19,-10 -35,-16 -39,-23 C-41,-28 -50,-29 -52,-34 C-54,-39 -55,-43 -57,-47 C-58,-48 -60,-56 -58,-58 C-54,-62 -52,-67 -46,-70 C-34,-76 -2,-72 10,-68 C16,-66 23,-61 28,-59 C37,-56 44,-53 50,-47 C57,-40 68,-37 71,-31 C75,-24 98,-9 98,-6`; // type=path const path = Path(pathInput); const turtle = new Turtle(); const circles = new Circles(); const randomOffset = 12.5;// min=0, max=50, step=0.5 const iterationsPerStep = 250; // min=1, max=1000, step=1 const maxRadius = 10.0; // min=1, max=50, step=0.25 const minRadius = 0.05; // min=0.01, max=20, step=0.01 const drawDensity = 0.5; // min=0, max=1, step=0.01 const steps = path.length() | 0; function walk(i) { let j = i / steps; const pos = path.p(j % 1); const t = 1 - (j / iterationsPerStep); const radius = lerp(minRadius, maxRadius, t); const circle = [ pos[0]+range(-randomOffset, randomOffset), pos[1]+range(-randomOffset, randomOffset), radius ]; if (circles.insert(circle)) { drawCircle(circle); } return i < steps*iterationsPerStep; } function drawCircle(pt) { let r = pt[2]; while(r > 0) { turtle.jump(pt[0], pt[1]-r); turtle.circle(r); r -= drawDensity * maxRadius; if (drawDensity === 0) break; } } // utils function clamp(v,min,max) { if (min>max) [min,max]=[max,min]; return v<min?min:(v>max?max:v); } function lerp(a,b,t) { return a + (b-a)*t; } function range(a,b) { return lerp(a,b,Math.random()); } // Circle pack by Mark Knol (@mknol) -- https://turtletoy.net/turtle/483faa0615 function Circles() { class Circles { constructor() { this.pts = []; } insert(p1) { let p2,dx,dy,r; for (let i=0,leni=this.pts.length;i<leni;i++) { p2 = this.pts[i]; dx = p1[0]-p2[0], dy = p1[1]-p2[1], r = p1[2]+p2[2]; if (dx*dx+dy*dy < r*r) { return false; } } this.pts.push(p1); return true; } get length() { return this.pts.length; } } return new Circles(); } //////////////////////////////////////////////////////////////// // Path utility code. Created by Reinder Nijhoff 2023 // Parses a single SVG path (only M, C and L statements are // supported). The p-method will return // [...position, ...derivative] for a normalized point t. // // https://turtletoy.net/turtle/46adb0ad70 //////////////////////////////////////////////////////////////// function Path(svg) { class MoveTo { constructor(p) { this.p0 = p; } p(t, s) { return [...this.p0, 1, 0]; } length() { return 0; } } class LineTo { constructor(p0, p1) { this.p0 = p0, this.p1 = p1; } p(t, s = 1) { const nt = 1 - t, p0 = this.p0, p1 = this.p1; return [ nt*p0[0] + t*p1[0], nt*p0[1] + t*p1[1], (p1[0] - p0[0]) * s, (p1[1] - p0[1]) * s, ]; } length() { const p0 = this.p0, p1 = this.p1; return Math.hypot(p0[0]-p1[0], p0[1]-p1[1]); } } class BezierTo { constructor(p0, c0, c1, p1) { this.p0 = p0, this.c0 = c0, this.c1 = c1, this.p1 = p1; } p(t, s = 1) { const nt = 1 - t, p0 = this.p0, c0 = this.c0, c1 = this.c1, p1 = this.p1; return [ nt*nt*nt*p0[0] + 3*t*nt*nt*c0[0] + 3*t*t*nt*c1[0] + t*t*t*p1[0], nt*nt*nt*p0[1] + 3*t*nt*nt*c0[1] + 3*t*t*nt*c1[1] + t*t*t*p1[1], (3*nt*nt*(c0[0]-p0[0]) + 6*t*nt*(c1[0]-c0[0]) + 3*t*t*(p1[0]-c1[0])) * s, (3*nt*nt*(c0[1]-p0[1]) + 6*t*nt*(c1[1]-c0[1]) + 3*t*t*(p1[1]-c1[1])) * s, ]; } length() { return this._length || ( this._length = Array.from({length:25}, (x, i) => this.p(i/25)).reduce( (a,c,i,v) => i > 0 ? a + Math.hypot(c[0]-v[i-1][0], c[1]-v[i-1][1]) : a, 0)); } } class Path { constructor(svg) { this.segments = []; this.parsePath(svg); } parsePath(svg) { const t = svg.match(/([0-9.-]+|[MLC])/g); for (let s, i=0; i<t.length;) { switch (t[i++]) { case 'M': this.add(new MoveTo(s=[t[i++],t[i++]])); break; case 'L': this.add(new LineTo(s, s=[t[i++],t[i++]])); break; case 'C': this.add(new BezierTo(s, [t[i++],t[i++]], [t[i++],t[i++]], s=[t[i++],t[i++]])); break; default: i++; } } } add(segment) { this.segments.push(segment); this._length = 0; } length() { return this._length || (this._length = this.segments.reduce((a,c) => a + c.length(), 0)); } p(t) { t = Math.max(Math.min(t, 1), 0) * this.length(); for (let l=0, i=0, sl=0; i<this.segments.length; i++, l+=sl) { sl = this.segments[i].length(); if (t > l && t <= l + sl) { return this.segments[i].p((t-l)/sl, sl/this.length()); } } return this.segments[Math.min(1, this.segments.length-1)].p(0); } } return new Path(svg); }