Procedural fingerprints
Log in to post a comment.
// Fingerprints. Created by Reinder Nijhoff 2021 - @reindernijhoff // // https://turtletoy.net/turtle/70e2e00c6f // const seed = 1; // min=1, max=100, step=1 const grid = 5; // min=1, max=10, step=1 const radius = 1.6; // min=0.1, max=5, step=0.01 const maxPathLength = 30; // min=1, max=100, step=0.1 const maxTries = 1000; function Translate(x,y) { return p => [p[0]+x, p[1]+y]; } function Scale(s) { return p => [p[0]*s, p[1]*s]; } class FingerPrint { constructor(seed, radius, x, y, grid) { this.noise = new SimplexNoise(seed); this.grid = new PoissonDiscGrid(radius); this.radius = radius; this.seed = seed; this.frequency = this.random(2, 4); this.yGradient = this.random(0.02, 0.07); this.poleStrength = this.random(0, 50); this.xOffset = this.random(-15, 15); this.yOffset = this.random(-0, 40); this.xShear = this.random(-.25, .25); this.yShear = this.random(-.25, .25); this.yScale = this.random(.5, 1); this.turtle = new Tortoise(); this.turtle.degrees(Math.PI * 2); this.turtle.traveled = 0; this.turtle.addTransform(Scale(1.4 / grid)); this.turtle.addTransform(Translate((x+.5)*180/grid-90, -(y+.5)*180/grid+90)); } hash() { let r = 1103515245 * (((this.seed+=12345) >> 1) ^ (this.seed)); r = 1103515245 * (r ^ (r >> 3)); r = r ^ (r >> 16); const mod = 1 << 20; return (r % mod) / mod; } random(min, max) { const v = this.hash(); return v * min + (1-v) * max; } fbm(x, y) { let v = this.yGradient * y + this.poleStrength / (3. + .3 * Math.hypot(x+this.xOffset+y*this.xShear, (y+this.yOffset+x*this.yShear) * this.yScale)); x *= this.frequency / 1000; y *= this.frequency / 1000; let f = 1.; for (let i=0; i<3; i++) { v += this.noise.noise2D([x * f, y * f]) / f; f *= 2; x += 32; } return v; } curlNoise(x, y) { const eps = 0.01; const dx = (this.fbm(x, y + eps) - this.fbm(x, y - eps))/(2 * eps); const dy = (this.fbm(x + eps, y) - this.fbm(x - eps, y))/(2 * eps); const l = Math.hypot(dx, dy) / this.radius * .99; return [dx / l, -dy / l]; } draw() { const p = this.turtle.pos(); const curl = this.curlNoise(p[0], p[1]); const dest = [p[0]+curl[0], p[1]+curl[1]]; if (this.turtle.traveled < maxPathLength && Math.hypot(dest[0], dest[1] * .7) < 33 + 5 * this.noise.noise2D([p[0]*0.01, p[1]*0.01]) && this.grid.insert(dest)) { this.turtle.goto(dest); this.turtle.traveled += Math.hypot(curl[0], curl[1]); } else { this.turtle.traveled = 0; let r, i = 0; do { r =[Math.random()*200-100, Math.random()*200-100]; i ++; } while(!this.grid.insert(r) && i < maxTries); if (i >= maxTries) { return false; } this.turtle.jump(r); } return true; } } const fps = []; for (let x=0; x<grid; x++) { for (let y=0; y<grid; y++) { fps.push(new FingerPrint(y + (seed << x) + (seed << y), radius, x, y, grid)); } } let fp = fps.pop(); function walk(i) { if (!fp.draw()) { fp = fps.pop(); } return fp ? true : false; } //////////////////////////////////////////////////////////////// // Simplex Noise utility code. Created by Reinder Nijhoff 2020 // https://turtletoy.net/turtle/6e4e06d42e // Based on: http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf //////////////////////////////////////////////////////////////// function SimplexNoise(seed = 1) { const grad = [ [1, 1, 0], [-1, 1, 0], [1, -1, 0], [-1, -1, 0], [1, 0, 1], [-1, 0, 1], [1, 0, -1], [-1, 0, -1], [0, 1, 1], [0, -1, 1], [0, 1, -1], [0, -1, -1] ]; const perm = new Uint8Array(512); const F2 = (Math.sqrt(3) - 1) / 2, F3 = 1/3; const G2 = (3 - Math.sqrt(3)) / 6, G3 = 1/6; const dot2 = (a, b) => a[0] * b[0] + a[1] * b[1]; const sub2 = (a, b) => [a[0] - b[0], a[1] - b[1]]; const dot3 = (a, b) => a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; const sub3 = (a, b) => [a[0] - b[0], a[1] - b[1], a[2] - b[2]]; class SimplexNoise { constructor(seed = 1) { for (let i = 0; i < 512; i++) { perm[i] = i & 255; } for (let i = 0; i < 255; i++) { const r = (seed = this.hash(i+seed)) % (256 - i) + i; const swp = perm[i]; perm[i + 256] = perm[i] = perm[r]; perm[r + 256] = perm[r] = swp; } } noise2D(p) { const s = dot2(p, [F2, F2]); const c = [Math.floor(p[0] + s), Math.floor(p[1] + s)]; const i = c[0] & 255, j = c[1] & 255; const t = dot2(c, [G2, G2]); const p0 = sub2(p, sub2(c, [t, t])); const o = p0[0] > p0[1] ? [1, 0] : [0, 1]; const p1 = sub2(sub2(p0, o), [-G2, -G2]); const p2 = sub2(p0, [1-2*G2, 1-2*G2]); let n = Math.max(0, 0.5-dot2(p0, p0))**4 * dot2(grad[perm[i+perm[j]] % 12], p0); n += Math.max(0, 0.5-dot2(p1, p1))**4 * dot2(grad[perm[i+o[0]+perm[j+o[1]]] % 12], p1); n += Math.max(0, 0.5-dot2(p2, p2))**4 * dot2(grad[perm[i+1+perm[j+1]] % 12], p2); return 70 * n; } hash(i) { i = 1103515245 * ((i >> 1) ^ i); const h32 = 1103515245 * (i ^ (i>>3)); return h32 ^ (h32 >> 16); } } return new SimplexNoise(seed); } //////////////////////////////////////////////////////////////// // Poisson-Disc utility code. Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/b5510898dc //////////////////////////////////////////////////////////////// function PoissonDiscGrid(radius) { class PoissonDiscGrid { constructor(radius) { this.cellSize = 1/Math.sqrt(2)/radius; this.radius2 = radius*radius; this.cells = []; } insert(p) { const x = p[0]*this.cellSize|0, y=p[1]*this.cellSize|0; for (let xi = x-1; xi<=x+1; xi++) { for (let yi = y-1; yi<=y+1; yi++) { const ps = this.cell(xi,yi); for (let i=0; i<ps.length; i++) { if ((ps[i][0]-p[0])**2 + (ps[i][1]-p[1])**2 < this.radius2) { return false; } } } } this.cell(x, y).push(p); return true; } cell(x,y) { const c = this.cells; return (c[x]?c[x]:c[x]=[])[y]?c[x][y]:c[x][y]=[]; } } return new PoissonDiscGrid(radius); } //////////////////////////////////////////////////////////////// // Tortoise utility code. Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/102cbd7c4d //////////////////////////////////////////////////////////////// function Tortoise(x, y) { class Tortoise extends Turtle { constructor(x, y) { super(x, y); this.ps = Array.isArray(x) ? [...x] : [x || 0, y || 0]; this.transforms = []; } addTransform(t) { this.transforms.push(t); this.jump(this.ps); return this; } applyTransforms(p) { if (!this.transforms) return p; let pt = [...p]; this.transforms.map(t => { pt = t(pt); }); return pt; } goto(x, y) { const p = Array.isArray(x) ? [...x] : [x, y]; const pt = this.applyTransforms(p); if (this.isdown() && (this.pt[0]-pt[0])**2 + (this.pt[1]-pt[1])**2 > 4) { this.goto((this.ps[0]+p[0])/2, (this.ps[1]+p[1])/2); this.goto(p); } else { super.goto(pt); this.ps = p; this.pt = pt; } } position() { return this.ps; } } return new Tortoise(x,y); }