Star ⭐

Merry Christmas!

Log in to post a comment.

const turtle = new Turtle();
const polygons = new Polygons();

function walk(i) {
    const shape = polygons.create();
    let starRotation = 0.0; // min=0, max=3.14, step=0.001;
    PolygonsUtil.star(shape, 0, 0, 90, 45, 6, starRotation, false);
    
    let inner = 0;
    let outer = 0;
    let iterations = 12; // min=4, max=40, step=1
    let rotation = 0.0;
    let outerStep = 19; // min=10, max=40, step=1
    let innerStep = 8; // min=2, max=40, step=1
    let rotationStep = 0.478; // min=0.0, max=2, step=0.001
    for (let ii=0; ii<outerStep; ii++) {
        PolygonsUtil.star(shape, 0, 0, inner += innerStep, outer += outerStep, iterations, rotation+=rotationStep, true);
    }
    shape.boolean(shape, false);
    shape.addOutline();
    polygons.draw(turtle, shape, true);
    
    const outline = polygons.create();
    PolygonsUtil.star(outline, 0, 0, 95, 48.5, 6, starRotation, false);
    outline.addOutline();
    polygons.draw(turtle, outline, true);
}

////////////////////////////////////////////////////////////////
// Polygon utility code - Created by Mark Knol 2019
// https://turtletoy.net/turtle/5ef089d251
////////////////////////////////////////////////////////////////

class PolygonsUtil {
    static circle(polygon, x, y, radius = 10, segments = 45, useSegments = false) {
        for (let ii = 0; ii <= segments; ii++) {
            const a = ii / segments * Math.PI * 2;
            if (useSegments) {
                const a2 = (ii+1) / segments * Math.PI * 2;
                polygon.addSegments([x + Math.cos(a) * radius, y + Math.sin(a) * radius], [x + Math.cos(a2) * radius, y + Math.sin(a2) * radius]);
            } else {
                polygon.addPoints([x + Math.cos(a) * radius, y + Math.sin(a) * radius]);
            }
        }
    }
    static rect(polygon, x, y, width, height) {
        polygon.addPoints([x, y], [x + width, y], [x + width, y + height], [x, y + height]);
    }
    static star(polygon, x, y, radiusInner = 30, radiusOuter = radiusInner * 0.3, corners = 4, rotation = 0.0, useSegments = true) {
        const segments = corners * 2;
        for (let ii = 0; ii <= segments; ii++) {
            const a = ii / segments * Math.PI * 2;
            const radius = ii & 1 ? radiusInner : radiusOuter;
            if (useSegments) {
                const a2 = (ii+1) / segments * Math.PI * 2;
                 const radius2 = (ii+1) & 1 ? radiusInner : radiusOuter;
                polygon.addSegments([x + Math.cos(rotation + a) * radius, y + Math.sin(rotation + a) * radius], [x + Math.cos(rotation + a2) * radius2, y + Math.sin(rotation + a2) * radius2]);
            } else {
                polygon.addPoints([x + Math.cos(rotation + a) * radius, y + Math.sin(rotation + a) * radius]);
            }
        }
    }
    static starParts(polygon, odd, x, y, radiusInner = 30, radiusOuter = radiusInner * 0.3, corners = 4, rotation = 0.0) {
        const segments = corners * 2;
        const start = 0;
        for (let ii = 0; ii <= segments; ii++) {
            const a = ii / segments * Math.PI * 2;
            
            let radius = ii % 2 == 1 ? radiusInner : radiusOuter;
            if (radius == radiusInner && !odd) polygon.addPoints([x, y]);
            polygon.addPoints([x + Math.cos(rotation + a) * radius, y + Math.sin(rotation +a) * radius]);
            if (radius == radiusInner && odd) polygon.addPoints([x, y]);
            
        }
    }
}


////////////////////////////////////////////////////////////////
// Polygon Clipping utility code - Created by Reinder Nijhoff 2019
// https://turtletoy.net/turtle/a5befa1f8d
////////////////////////////////////////////////////////////////

function Polygons() {
	const polygonList = [];
	const Polygon = class {
		constructor() {
			this.cp = [];       // clip path: array of [x,y] pairs
			this.dp = [];       // 2d lines [x0,y0],[x1,y1] to draw
			this.aabb = [];     // AABB bounding box
		}
		addPoints(...points) {
		    // add point to clip path and update bounding box
		    let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5;
			(this.cp = [...this.cp, ...points]).forEach( p => {
				xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]);
				ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]);
			});
		    this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2];
		}
		addSegments(...points) {
		    // add segments (each a pair of points)
		    points.forEach(p => this.dp.push(p));
		}
		addOutline() {
			for (let i = 0, l = this.cp.length; i < l; i++) {
				this.dp.push(this.cp[i], this.cp[(i + 1) % l]);
			}
		}
		draw(t) {
			for (let i = 0, l = this.dp.length; i < l; i+=2) {
				t.jump(this.dp[i]), t.goto(this.dp[i + 1]);
			}
		}
		addHatching(a, d) {
			const tp = new Polygon();
			tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);
			const dx = Math.sin(a) * d,   dy = Math.cos(a) * d;
			const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200;
			for (let i = 0.5; i < 150 / d; i++) {
				tp.dp.push([dx * i + cy,   dy * i - cx], [dx * i - cy,   dy * i + cx]);
				tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]);
			}
			tp.boolean(this, false);
			this.dp = [...this.dp, ...tp.dp];
		}
		inside(p) {
			let int = 0; // find number of i ntersection points from p to far away
			for (let i = 0, l = this.cp.length; i < l; i++) {
				if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) {
					int++;
				}
			}
			return int & 1; // if even your outside
		}
		boolean(p, diff = true) {
		    // bouding box optimization by ge1doot.
		    if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 &&
				Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0;
				
			// polygon diff algorithm (narrow phase)
			const ndp = [];
			for (let i = 0, l = this.dp.length; i < l; i+=2) {
				const ls0 = this.dp[i];
				const ls1 = this.dp[i + 1];
				// find all intersections with clip path
				const int = [];
				for (let j = 0, cl = p.cp.length; j < cl; j++) {
					const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]);
					if (pint !== false) {
						int.push(pint);
					}
				}
				if (int.length === 0) {
					// 0 intersections, inside or outside?
					if (diff === !p.inside(ls0)) {
						ndp.push(ls0, ls1);
					}
				} else {
					int.push(ls0, ls1);
					// order intersection points on line ls.p1 to ls.p2
					const cmpx = ls1[0] - ls0[0];
					const cmpy = ls1[1] - ls0[1];
					int.sort( (a,b) =>  (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - 
					                    (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy);
					 
					for (let j = 0; j < int.length - 1; j++) {
						if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) {
							if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) {
								ndp.push(int[j], int[j+1]);
							}
						}
					}
				}
			}
			return (this.dp = ndp).length > 0;
		}
		//port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs
		segment_intersect(l1p1, l1p2, l2p1, l2p2) {
			const d   = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]);
			if (d === 0) return false;
			const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]);
			const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]);
			const ua = n_a / d;
			const ub = n_b / d;
			if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) {
				return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])];
			}
			return false;
		}
	};
	return {
		list: () => polygonList,
		create: () => new Polygon(),
		draw: (turtle, p, addToVisList=true) => {
			for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++);
			p.draw(turtle);
			if (addToVisList) polygonList.push(p);
		}
	};
}