A first experiment to draw a procedural city of cubic building blocks. The city will be different each reload / re-compile. Try out different options by changing the settings at the top of the code.
In a next turtle, I will clean up and optimize the code and add more variety to the buildings.
#city #polygons #3D
Log in to post a comment.
// Cubic cityscape #1. Created by Reinder Nijhoff 2018 // @reindernijhoff // // https://turtletoy.net/turtle/789cce3829 // // Try different settings here: const useOrthoGraphicPerspective = Math.random() > .5; const towerness = .25; // [0, 1) const topDownView = Math.random() > .5; const addHatching = Math.random() > .5; // A lot of ugly code: Canvas.setpenopacity(1); const turtle = new Turtle(); let viewProjectionMatrix; let polygonList = []; const lineSegmentsDrawn = []; // keep track of all line segments. Don't draw duplicates const width = 30; const depth = 70; const camPos = [12,topDownView?13.5:-10.5,-2.3]; const camLookat = [19,topDownView?9.5:-6,-10]; function walk(i) { if (i == 0) { setupCamera(); } for (let j=0; j<width; j++) { const x = (width - j + (i+1)/2|0) - (width-20); const z = -(j + i/2|0) + (width-20); const y = (x-z-40); // 2 drawHome(turtle, [x,y,z], true); } return i < depth; } function createWall() { return[createSquare([0,0,0], [1,1,0])]; // wall } function createWallDecoration(floorLevel) { const p = []; for (let i=0; i<2; i++) { const x = .2+i*.4; if (Math.random() > .5) { p.push(createSquare([x,0.3,0], [x+.2,.7,0])); // window } else if (floorLevel && Math.random() > .7) { p.push(createSquare([x,0,0], [x+.2,.7,0])); // door } } return p; } function createRoof() { const p = []; let flat = false; if (Math.random() > .5) { p.push(createSquare([0,1,0], [1,1,-1])); // roof flat = true; } else { p.push(createSquare([0,1,0], [1,1.5,-.5])); // roof p.push(createSquare([0,1,-1], [1,1.5,-.5]).reverse()); // roof p.push([[0,1,-1],[0,1.5,-.5],[0,1,0]]); p.push([[1,1,0],[1,1.5,-.5],[1,1,-1]]); if (Math.random() > .5) { return {flatRoof: false, flipped: true, polygons: flipxz(p)}; } } return {flatRoof: flat, flipped: false, polygons: p}; } function drawHome(turtle, loc, floorLevel) { let p = []; const occluders = []; let roof = false; p = p.concat(center(createWall(), loc)); p = p.concat(center(flipxz(createWall()), loc)); p = p.concat(center(createWallDecoration(floorLevel), loc)); p = p.concat(center(flipxz(createWallDecoration(floorLevel)), loc)); if (Math.random() > 1-towerness) { // extra level drawHome(turtle, add3(loc,[0,1,0]), false); } else { roof = createRoof(); p = p.concat(center(roof.polygons, loc)); } for (let i=0; i<p.length; i++) { const polygon = new Polygon(); const vl = p[i]; const vd = useOrthoGraphicPerspective ? sub3(camLookat, camPos) : sub3(scale3(add3(vl[0],vl[2]),.5), camPos); let normal = cross3(sub3(vl[1],vl[0]),sub3(vl[2],vl[0])); if (dot3(normal,vd) < 0 ) { continue; } for (let j=0; j<vl.length; j++) { const v = transform4(vl[j], viewProjectionMatrix); if (useOrthoGraphicPerspective) { polygon.cp.push([(v[0]*2.5), -(v[1]*2.5)]); } else { polygon.cp.push([(v[0]/v[3]*50), -(v[1]/v[3]*50)]); } } let vis = false; for (let j=0; j<polygon.cp.length; j++) { if (Math.abs(polygon.cp[j][0]) < 100 && Math.abs(polygon.cp[j][1]) < 100) { vis = true; } } if (!vis) { continue; } if (i<2) { // first two are walls polygon.dp.push(new LineSegment(polygon.cp[0], polygon.cp[1])); if (roof && !topDownView) { if (roof.flatRoof || (roof.flipped && i == 1) || (!roof.flipped && i == 0)) { polygon.dp.push(new LineSegment(polygon.cp[1], polygon.cp[2])); } } polygon.dp.push(new LineSegment(polygon.cp[2], polygon.cp[3])); } else if (polygon.cp.length === 3) { // roof polygon.dp.push(new LineSegment(polygon.cp[0], polygon.cp[1])); polygon.dp.push(new LineSegment(polygon.cp[1], polygon.cp[2])); } else { polygon.addOutline(); } if (addHatching) { normal = normalize3(normal); if (normal[2] < 0) { polygon.addHatching(.85, .75); } } const occluder = drawPolygon(turtle, polygon); if (i<2) { // first two are walls occluders.push(polygon); } else if (occluder) { occluders.push(occluder); } } polygonList = polygonList.concat(occluders); } function drawPolygon(turtle, p) { for (let j=0; j<polygonList.length; j++) { if(!p.boolean(polygonList[j])) { return; } } p.draw(turtle); return p; } function setupCamera() { viewMatrix = lookAt4m(camPos, camLookat, [0,1,0]); projectionMatrix = perspective4m(0.4, 1); viewProjectionMatrix = multiply4m(projectionMatrix, viewMatrix); } // helper functions function flipxz(p) { for (let i=0; i<p.length; i++) { const vl = p[i]; for (let j=0; j<vl.length; j++) { p[i][j] = [-vl[j][2],vl[j][1],vl[j][0]-1]; } } return p; } function center(p, loc) { const ret = []; for (let i=0; i<p.length; i++) { const vl = p[i], v = []; for (let j=0; j<vl.length; j++) { v.push(add3(vl[j], loc)); } ret.push(v); } return ret; } function createSquare(lb, rt) { return [lb,[lb[0],rt[1],rt[2]],rt,[rt[0],lb[1],lb[2]]]; } // polygon functions class LineSegment { constructor(p1, p2) { this.p1 = p1; this.p2 = p2; } unique() { for (let i=0, l=lineSegmentsDrawn.length; i<l; i++) { const ls = lineSegmentsDrawn[i]; if ( (equal2(this.p1, ls.p1) && equal2(this.p2, ls.p2)) || (equal2(this.p1, ls.p2) && equal2(this.p2, ls.p1)) ){ return false; } } lineSegmentsDrawn.push(this); return true; } } class Polygon { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d line to draw: array of linesegments } addOutline(s=0) { for (let i=s, l=this.cp.length; i<l; i++) { this.dp.push(new LineSegment(this.cp[i], this.cp[(i+1)%l])); } } createPoly(x,y,c,r,a) { this.cp = []; for (let i=0; i<c; i++) { this.cp.push( [x + Math.sin(i*Math.PI*2/c+a) * r, y + Math.cos(i*Math.PI*2/c+a) * r] ); } } addHatching(a,d) { // todo, create a tight bounding polygon, for now fill screen const tp = new Polygon(); tp.createPoly(0,0,4,200,Math.PI*.5); const dx = Math.sin(a)*d, dy = Math.cos(a)*d; const cx = Math.sin(a)*200, cy = Math.cos(a)*200; for (let i = .5; i<150/d; i++) { tp.dp.push(new LineSegment([dx*i+cy,dy*i-cx], [dx*i-cy,dy*i+cx])); tp.dp.push(new LineSegment([-dx*i+cy,-dy*i-cx], [-dx*i-cy,-dy*i+cx])); } tp.boolean(this, false); this.dp = this.dp.concat(tp.dp); } draw(t) { if (this.dp.length ==0) { return; } for (let i=0, l=this.dp.length; i<l; i++) { const d = this.dp[i]; if (d.unique()) { if (!equal2(d.p1, t.pos())) { t.penup(); t.goto(d.p1); t.pendown(); } t.goto(d.p2); } } } inside(p) { // find number of intersections from p to far away - if even you're outside const p1 = [0, -1000]; let int = 0; for (let i=0, l=this.cp.length; i<l; i++) { if (segment_intersect2(p, p1, this.cp[i], this.cp[(i+1)%l])) { int ++; } } return int & 1; } boolean(p, diff = true) { // very naive polygon diff algorithm - made this up myself const ndp = []; for (let i=0, l=this.dp.length; i<l; i++) { const ls = this.dp[i]; // find all intersections with clip path const int = []; for (let j=0, cl=p.cp.length; j<cl; j++) { const pint = segment_intersect2(ls.p1,ls.p2,p.cp[j],p.cp[(j+1)%cl]); if (pint) { int.push(pint); } } if (int.length == 0) { // 0 intersections, inside or outside? if (diff != p.inside(ls.p1)) { ndp.push(ls); } } else { int.push(ls.p1); int.push(ls.p2); // order intersection points on line ls.p1 to ls.p2 const cmp = sub2(ls.p2,ls.p1); int.sort((a,b) => dot2(sub2(a,ls.p1),cmp)-dot2(sub2(b,ls.p1),cmp)); for (let j=0; j<int.length-1; j++) { if (!equal2(int[j], int[j+1]) && diff != p.inside(scale2(add2(int[j],int[j+1]),.5))) { ndp.push(new LineSegment(int[j], int[j+1])); } } } } this.dp = ndp; return this.dp.length > 0; } } // vec2 functions const equal2=(a,b)=>0.001>dist_sqr2(a,b); const scale2=(a,b)=>[a[0]*b,a[1]*b]; const add2=(a,b)=>[a[0]+b[0],a[1]+b[1]]; const sub2=(a,b)=>[a[0]-b[0],a[1]-b[1]]; const dot2=(a,b)=>a[0]*b[0]+a[1]*b[1]; const dist_sqr2=(a,b)=>(a[0]-b[0])*(a[0]-b[0])+(a[1]-b[1])*(a[1]-b[1]); const segment_intersect2=(a,b,d,c)=>{ const e=(c[1]-d[1])*(b[0]-a[0])-(c[0]-d[0])*(b[1]-a[1]); if(0==e)return false; c=((c[0]-d[0])*(a[1]-d[1])-(c[1]-d[1])*(a[0]-d[0]))/e; d=((b[0]-a[0])*(a[1]-d[1])-(b[1]-a[1])*(a[0]-d[0]))/e; return 0<=c&&1>=c&&0<=d&&1>=d?[a[0]+c*(b[0]-a[0]),a[1]+c*(b[1]-a[1])]:false; } // vec3 functions const scale3=(a,b)=>[a[0]*b,a[1]*b,a[2]*b]; const len3=(a)=>Math.sqrt(dot3(a,a)); const normalize3=(a)=>scale3(a,1/len3(a)); const add3=(a,b)=>[a[0]+b[0],a[1]+b[1],a[2]+b[2]]; const sub3=(a,b)=>[a[0]-b[0],a[1]-b[1],a[2]-b[2]]; const dot3=(a,b)=>a[0]*b[0]+a[1]*b[1]+a[2]*b[2]; const cross3=(a,b)=>[a[1]*b[2]-a[2]*b[1],a[2]*b[0]-a[0]*b[2],a[0]*b[1]-a[1]*b[0]]; // vec4 functions const transform4=(a,b)=>{ const d=new Float32Array(4); for(let c=0;4>c;c++)d[c]=b[c]*a[0]+b[c+4]*a[1]+b[c+8]*a[2]+b[c+12]; return d; } // mat4 functions const lookAt4m=(a,b,d)=>{ // pos, lookAt, up const c=new Float32Array(16); b=normalize3(sub3(a,b)); d=normalize3(cross3(d,b)); const e=normalize3(cross3(b,d)); c[0]=d[0];c[1]=e[0];c[2]=b[0];c[3]=0; c[4]=d[1];c[5]=e[1];c[6]=b[1];c[7]=0; c[8]=d[2];c[9]=e[2];c[10]=b[2];c[11]=0; c[12]=-(d[0]*a[0]+d[1]*a[1]+d[2]*a[2]); c[13]=-(e[0]*a[0]+e[1]*a[1]+e[2]*a[2]); c[14]=-(b[0]*a[0]+b[1]*a[1]+b[2]*a[2]); c[15]=1; return c; } const multiply4m=(a,b)=>{ const d=new Float32Array(16); for(let c=0;16>c;c+=4) for(let e=0;4>e;e++) d[c+e]=b[c+0]*a[0+e]+b[c+1]*a[4+e]+b[c+2]*a[8+e]+b[c+3]*a[12+e]; return d; } const perspective4m=(a,b)=>{ // fovy, aspect const c=(new Float32Array(16)).fill(0,0); c[5]=1/Math.tan(a/2); c[0]=c[5]/b; c[10]=c[11]=-1; return c; }