or sunset...
Log in to post a comment.
const largePeriod = 350; //min=1 max=500 step=1 const largeAmplitude = 35; //min=0 max=50 step=1 const smallPeriod = 100; //min=1 max=500 step=1 const smallAmplitude = 10; //min=0 max=50 step=1 const microPeriod = 7; //min=1 max=500 step=1 const microAmplitude = 2; //min=0 max=10 step=1 const ridgeCount = 10; //min=1 max=10 step=1 const distExp = 1.1; //min=0 max=5 step=.1 const sunRadius = 20; //min=0 max=50 step=.1 const sunFlareRadius = 150; //min=50 max=300 step=1 const sunFlareCount = 18; //min=3 max=30 step=1 const sunFlareOffset = 5; //min=0 max=360 step=.1 const gradientDistance = .2; //min=.2 max=10 step=.1 // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(.04); // Global code will be evaluated once. turtlelib_init(); loadHatcheryNamespace(); R.seed('test'); const polygons = new Polygons(); const turtle = new Bale(.04); const s = Simplex().createNoise2D(); const ridges = Array.from({length: ridgeCount}).map((e, i) => { const mY = (80 - Math.sin(i/(ridgeCount - 1) * Math.PI / 2) * 80); const dist = 1 - (i / (ridgeCount - 1)); return Array.from({length: 201}).map((e, i) => [i-100, mY + (dist / 3)**distExp * largeAmplitude*s(i/((dist / 3)*largePeriod), 0 + mY)+ (dist / 1.5)**distExp * smallAmplitude*s(i/((dist / 1.5)*smallPeriod), 50 + mY)+ dist**distExp * microAmplitude*s(i/(dist*microPeriod), 100 + mY) ]) }); ///console.log(ridges); // The walk function will be called until it returns false. let ridgePts = []; function walk(i) { const ridge = ridges[i]; turtle.setOpacity(1 - i/(ridges.length - 1)) const p = polygons.create(); ridgePts = [[-110, 110], [-110, ridge[0][1]], ...ridge, [110, ridge[ridge.length - 1][1]], [110, 110]]; p.opacity = 1 - i/(ridges.length - 1); p.addPoints(...ridgePts); p.addHatching(1, gradientDistance); polygons.draw(turtle, p); turtle[i == 0? 'jump': 'goto'](ridges[i]); if(i == ridges.length - 2) { const maxRidgeY = ridgePts.reduce((a, c) => Math.max(a, c[1]), -100); const radPerFlare = 2 * Math.PI / sunFlareCount; const subSun = []; const subFlare = []; for(let j = 0, max = radPerFlare * sunRadius | 0; j < max; j++) { subSun.push([ sunRadius * Math.cos(.5 * radPerFlare * j / (max - 1)), sunRadius * Math.sin(.5 * radPerFlare * j / (max - 1)) ]); } for(let j = 0, max = radPerFlare * sunFlareRadius | 0; j < max; j++) { subFlare.push([ sunFlareRadius * Math.cos(.5 * radPerFlare + .5 * radPerFlare * j / (max - 1)), sunFlareRadius * Math.sin(.5 * radPerFlare + .5 * radPerFlare * j / (max - 1)) ]); } const rotX = sunFlareOffset * Math.PI / 180; const sunPts = Array.from({length: sunFlareCount}) .flatMap((e, i) => [...subSun, ...subFlare].map(pt => V.trans(V.rot2d(rotX + -i * Math.PI * 2 / sunFlareCount), pt))) .filter(pt => pt[1] < maxRidgeY); const sun = polygons.create(); sun.addPoints(...sunPts); //sun.opacity = .25; //sun.addHatching(1, 1); sun.addHatching(new GradientCircularHatching(turtle, gradientDistance, [0, 0], 1, [[0, 0], [sunRadius + .25 * (sunFlareRadius - sunRadius), 0], [sunFlareRadius, .5]])) //sun.opacity = 1; //sun.addOutline(); polygons.draw(turtle, sun); const bgPts = [[-101, maxRidgeY], [-101, -101], [101, -101], [101, maxRidgeY]]; const bg = polygons.create(); bg.addPoints(...bgPts); bg.opacity = .5; bg.addHatching(new LineHatching(0, gradientDistance, 0, [ [[0,-10], .2], [[0, -100], .5]])); polygons.draw(turtle, bg); } return i < ridges.length - 1; } //////////////////////////////////////////////////////////////// // Bale utility code 2.0 - Created by Jurgen Westerhof 2025 // https://turtletoy.net/turtle/7b8c486a30 // (Ab)using the opacity, usage: // Canvas.setpenopacity(sceneOpacity); // const bale = new Bale(sceneOpacity); // Then use bale wherever you would use a turtle object to 'draw' // in 'opacity' x (i.e Polygon hatching with a bale object and // .25 interspacing), or: // bale.setOpacity(.5); // bale.jump(0,0); // bale.goto(40,0); //////////////////////////////////////////////////////////////// function Bale(sceneOpacity, turtleClass = Turtle) { class Turtle { #useTurtleCount = 0; #turtles = []; #sceneOpacity = 0; #opacity = 1; #useTurtleCounts = {}; constructor(sceneOpacity, turtleClass) { this.#sceneOpacity = sceneOpacity; this.#turtles = Array.from({length: Math.max(1, this.getTurtleCountForOpacity(1))}, (e,i) => new turtleClass()); this.#useTurtleCount = this.#turtles.length; } //set opacity(op) { // //} get opacity() { return this.#opacity; } setOpacity(opacity) { if(opacity < 0 || 1 < opacity) { throw new Error(`Out of bounds opacity. 0 <= opacity <= 1, got ${opacity}`); } this.#opacity = opacity; if(this.#useTurtleCounts[''+this.#opacity] === undefined) { this.#useTurtleCounts[''+this.#opacity] = this.getTurtleCountForOpacity(opacity); } this.#useTurtleCount = this.#useTurtleCounts[''+this.#opacity]; } getProp(prop) { return this.#turtles[0][prop]; } invokeProp(action, a, b, c, d, e, f, g) { return this.#turtles.reduce((acc, turtle, i) => turtle[action == 'goto' && this.#useTurtleCount <= i? 'jump': action](a, b, c, d, e, f, g), 0); } getTurtleCountForOpacity(targetOpacity) { if (targetOpacity <= 0) return 0; if (targetOpacity >= .5 && this.#turtles.length == 1) return 1; return Math.round(Math.log(1 - Math.min(.99, targetOpacity)) / Math.log(1 - this.#sceneOpacity)); } } const TurtleProxy = { get(target, prop, receiver) { switch(prop) { case 'setOpacity': return (opacity) => target.setOpacity(opacity); case 'clone': throw new Error('Cloning not implemented'); case 'position': //for faster processing, known functions case 'pos': //of a turtle that don't change the case 'xcor': //the state of a turtle but just tell case 'x': //the state of a turtle, there's no need case 'ycor': //to iterate over the whole bale but case 'y': //only return the value from the first case 'heading': //turtle in the bale. That's where these case 'h': //9 cases are an exception to the rest case 'isdown': //of a turtle's functions return target.getProp(prop); default: return (a, b, c, d, e, f, g) => target.invokeProp(prop, a, b, c, d, e, f, g); } }, }; return new Proxy(new Turtle(sceneOpacity, turtleClass), TurtleProxy); } // Ported https://www.skypack.dev/view/simplex-noise function Simplex() { const F2 = 0.5 * (Math.sqrt(3) - 1); const G2 = (3 - Math.sqrt(3)) / 6; const F3 = 1 / 3; const G3 = 1 / 6; const F4 = (Math.sqrt(5) - 1) / 4; const G4 = (5 - Math.sqrt(5)) / 20; const fastFloor = (x) => Math.floor(x) | 0; const grad2 = /* @__PURE__ */ new Float64Array([1,1,-1,1,1,-1,-1,-1,1,0,-1,0,1,0,-1,0,0,1,0,-1,0,1,0,-1]); const grad3 = /* @__PURE__ */ new Float64Array([1,1,0,-1,1,0,1,-1,0,-1,-1,0,1,0,1,-1,0,1,1,0,-1,-1,0,-1,0,1,1,0,-1,1,0,1,-1,0,-1,-1]); const grad4 = /* @__PURE__ */ new Float64Array([0,1,1,1,0,1,1,-1,0,1,-1,1,0,1,-1,-1,0,-1,1,1,0,-1,1,-1,0,-1,-1,1,0,-1,-1,-1,1,0,1,1,1,0,1,-1,1,0,-1,1,1,0,-1,-1,-1,0,1,1,-1,0,1,-1,-1,0,-1,1,-1,0,-1,-1,1,1,0,1,1,1,0,-1,1,-1,0,1,1,-1,0,-1,-1,1,0,1,-1,1,0,-1,-1,-1,0,1,-1,-1,0,-1,1,1,1,0,1,1,-1,0,1,-1,1,0,1,-1,-1,0,-1,1,1,0,-1,1,-1,0,-1,-1,1,0,-1,-1,-1,0]); function createNoise2D(random = Math.random) { const perm = buildPermutationTable(random); const permGrad2x = new Float64Array(perm).map((v) => grad2[v % 12 * 2]); const permGrad2y = new Float64Array(perm).map((v) => grad2[v % 12 * 2 + 1]); return function noise2D(x, y) { let n0 = 0; let n1 = 0; let n2 = 0; const s = (x + y) * F2; const i = fastFloor(x + s); const j = fastFloor(y + s); const t = (i + j) * G2; const X0 = i - t; const Y0 = j - t; const x0 = x - X0; const y0 = y - Y0; let i1, j1; if (x0 > y0) { i1 = 1; j1 = 0; } else { i1 = 0; j1 = 1; } const x1 = x0 - i1 + G2; const y1 = y0 - j1 + G2; const x2 = x0 - 1 + 2 * G2; const y2 = y0 - 1 + 2 * G2; const ii = i & 255; const jj = j & 255; let t0 = 0.5 - x0 * x0 - y0 * y0; if (t0 >= 0) { const gi0 = ii + perm[jj]; const g0x = permGrad2x[gi0]; const g0y = permGrad2y[gi0]; t0 *= t0; n0 = t0 * t0 * (g0x * x0 + g0y * y0); } let t1 = 0.5 - x1 * x1 - y1 * y1; if (t1 >= 0) { const gi1 = ii + i1 + perm[jj + j1]; const g1x = permGrad2x[gi1]; const g1y = permGrad2y[gi1]; t1 *= t1; n1 = t1 * t1 * (g1x * x1 + g1y * y1); } let t2 = 0.5 - x2 * x2 - y2 * y2; if (t2 >= 0) { const gi2 = ii + 1 + perm[jj + 1]; const g2x = permGrad2x[gi2]; const g2y = permGrad2y[gi2]; t2 *= t2; n2 = t2 * t2 * (g2x * x2 + g2y * y2); } return 70 * (n0 + n1 + n2); }; } function createNoise3D(random = Math.random) { const perm = buildPermutationTable(random); const permGrad3x = new Float64Array(perm).map((v) => grad3[v % 12 * 3]); const permGrad3y = new Float64Array(perm).map((v) => grad3[v % 12 * 3 + 1]); const permGrad3z = new Float64Array(perm).map((v) => grad3[v % 12 * 3 + 2]); return function noise3D(x, y, z) { let n0, n1, n2, n3; const s = (x + y + z) * F3; const i = fastFloor(x + s); const j = fastFloor(y + s); const k = fastFloor(z + s); const t = (i + j + k) * G3; const X0 = i - t; const Y0 = j - t; const Z0 = k - t; const x0 = x - X0; const y0 = y - Y0; const z0 = z - Z0; let i1, j1, k1; let i2, j2, k2; if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } } else { if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } } const x1 = x0 - i1 + G3; const y1 = y0 - j1 + G3; const z1 = z0 - k1 + G3; const x2 = x0 - i2 + 2 * G3; const y2 = y0 - j2 + 2 * G3; const z2 = z0 - k2 + 2 * G3; const x3 = x0 - 1 + 3 * G3; const y3 = y0 - 1 + 3 * G3; const z3 = z0 - 1 + 3 * G3; const ii = i & 255; const jj = j & 255; const kk = k & 255; let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0) n0 = 0; else { const gi0 = ii + perm[jj + perm[kk]]; t0 *= t0; n0 = t0 * t0 * (permGrad3x[gi0] * x0 + permGrad3y[gi0] * y0 + permGrad3z[gi0] * z0); } let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0) n1 = 0; else { const gi1 = ii + i1 + perm[jj + j1 + perm[kk + k1]]; t1 *= t1; n1 = t1 * t1 * (permGrad3x[gi1] * x1 + permGrad3y[gi1] * y1 + permGrad3z[gi1] * z1); } let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0) n2 = 0; else { const gi2 = ii + i2 + perm[jj + j2 + perm[kk + k2]]; t2 *= t2; n2 = t2 * t2 * (permGrad3x[gi2] * x2 + permGrad3y[gi2] * y2 + permGrad3z[gi2] * z2); } let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0) n3 = 0; else { const gi3 = ii + 1 + perm[jj + 1 + perm[kk + 1]]; t3 *= t3; n3 = t3 * t3 * (permGrad3x[gi3] * x3 + permGrad3y[gi3] * y3 + permGrad3z[gi3] * z3); } return 32 * (n0 + n1 + n2 + n3); }; } function createNoise4D(random = Math.random) { const perm = buildPermutationTable(random); const permGrad4x = new Float64Array(perm).map((v) => grad4[v % 32 * 4]); const permGrad4y = new Float64Array(perm).map((v) => grad4[v % 32 * 4 + 1]); const permGrad4z = new Float64Array(perm).map((v) => grad4[v % 32 * 4 + 2]); const permGrad4w = new Float64Array(perm).map((v) => grad4[v % 32 * 4 + 3]); return function noise4D(x, y, z, w) { let n0, n1, n2, n3, n4; const s = (x + y + z + w) * F4; const i = fastFloor(x + s); const j = fastFloor(y + s); const k = fastFloor(z + s); const l = fastFloor(w + s); const t = (i + j + k + l) * G4; const X0 = i - t; const Y0 = j - t; const Z0 = k - t; const W0 = l - t; const x0 = x - X0; const y0 = y - Y0; const z0 = z - Z0; const w0 = w - W0; let rankx = 0; let ranky = 0; let rankz = 0; let rankw = 0; if (x0 > y0) rankx++; else ranky++; if (x0 > z0) rankx++; else rankz++; if (x0 > w0) rankx++; else rankw++; if (y0 > z0) ranky++; else rankz++; if (y0 > w0) ranky++; else rankw++; if (z0 > w0) rankz++; else rankw++; const i1 = rankx >= 3 ? 1 : 0; const j1 = ranky >= 3 ? 1 : 0; const k1 = rankz >= 3 ? 1 : 0; const l1 = rankw >= 3 ? 1 : 0; const i2 = rankx >= 2 ? 1 : 0; const j2 = ranky >= 2 ? 1 : 0; const k2 = rankz >= 2 ? 1 : 0; const l2 = rankw >= 2 ? 1 : 0; const i3 = rankx >= 1 ? 1 : 0; const j3 = ranky >= 1 ? 1 : 0; const k3 = rankz >= 1 ? 1 : 0; const l3 = rankw >= 1 ? 1 : 0; const x1 = x0 - i1 + G4; const y1 = y0 - j1 + G4; const z1 = z0 - k1 + G4; const w1 = w0 - l1 + G4; const x2 = x0 - i2 + 2 * G4; const y2 = y0 - j2 + 2 * G4; const z2 = z0 - k2 + 2 * G4; const w2 = w0 - l2 + 2 * G4; const x3 = x0 - i3 + 3 * G4; const y3 = y0 - j3 + 3 * G4; const z3 = z0 - k3 + 3 * G4; const w3 = w0 - l3 + 3 * G4; const x4 = x0 - 1 + 4 * G4; const y4 = y0 - 1 + 4 * G4; const z4 = z0 - 1 + 4 * G4; const w4 = w0 - 1 + 4 * G4; const ii = i & 255; const jj = j & 255; const kk = k & 255; const ll = l & 255; let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; if (t0 < 0) n0 = 0; else { const gi0 = ii + perm[jj + perm[kk + perm[ll]]]; t0 *= t0; n0 = t0 * t0 * (permGrad4x[gi0] * x0 + permGrad4y[gi0] * y0 + permGrad4z[gi0] * z0 + permGrad4w[gi0] * w0); } let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; if (t1 < 0) n1 = 0; else { const gi1 = ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]; t1 *= t1; n1 = t1 * t1 * (permGrad4x[gi1] * x1 + permGrad4y[gi1] * y1 + permGrad4z[gi1] * z1 + permGrad4w[gi1] * w1); } let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; if (t2 < 0) n2 = 0; else { const gi2 = ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]; t2 *= t2; n2 = t2 * t2 * (permGrad4x[gi2] * x2 + permGrad4y[gi2] * y2 + permGrad4z[gi2] * z2 + permGrad4w[gi2] * w2); } let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; if (t3 < 0) n3 = 0; else { const gi3 = ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]; t3 *= t3; n3 = t3 * t3 * (permGrad4x[gi3] * x3 + permGrad4y[gi3] * y3 + permGrad4z[gi3] * z3 + permGrad4w[gi3] * w3); } let t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; if (t4 < 0) n4 = 0; else { const gi4 = ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]; t4 *= t4; n4 = t4 * t4 * (permGrad4x[gi4] * x4 + permGrad4y[gi4] * y4 + permGrad4z[gi4] * z4 + permGrad4w[gi4] * w4); } return 27 * (n0 + n1 + n2 + n3 + n4); }; } function buildPermutationTable(random) { const tableSize = 512; const p = new Uint8Array(tableSize); for (let i = 0; i < tableSize / 2; i++) { p[i] = i; } for (let i = 0; i < tableSize / 2 - 1; i++) { const r = i + ~~(random() * (256 - i)); const aux = p[i]; p[i] = p[r]; p[r] = aux; } for (let i = 256; i < tableSize; i++) { p[i] = p[i - 256]; } return p; } class Simplex { buildPermutationTable(random) { return buildPermutationTable(random); } createNoise2D(random) { return createNoise2D(random); } createNoise3D(random) { return createNoise3D(random); } createNoise4D(random) { return createNoise4D(random); } } return new Simplex(); } /////////////////////////////////////////////////////////////////// // Polygon Hatching utility code - Created by Jurgen Westerhof 2024 // https://turtletoy.net/turtle/d068ad6040 // //////////////////////////////////////////////////////////////// // // To be used with modified Polygon Clipping utility code // // Orginal: https://turtletoy.net/turtle/a5befa1f8d // // Polygon binning: https://turtletoy.net/turtle/95f33bd383 // // Delegated Hatching: https://turtletoy.net/turtle/d068ad6040 /////////////////////////////////////////////////////////////////// function loadHatcheryNamespace() { //for convenience on Turtletoy you can click the arrow to the right of the line number to collapse a class //////////////////////////////////////////////////// root class PolygonHatching { constructor() { if (this.constructor === PolygonHatching) { throw new Error("PolygonHatching is an abstract class and can't be instantiated."); } this.minX = -100; this.minY = -100; this.maxX = 100; this.maxY = 100; this.width = 200; this.height = 200; this.segments = []; this.init(); } hatch(polygonsClass, thePolygonToHatch) { const e = new polygonsClass; e.cp.push(...thePolygonToHatch.aabb);//[-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); this.addHatchSegments(e.dp); e.boolean(thePolygonToHatch,!1); thePolygonToHatch.dp=[...thePolygonToHatch.dp,...e.dp]; } addHatchSegments(segments) { this.getSegments().forEach(e => segments.push(e)); } getSegments() { return this.segments; } init() { /////////////////////////////////////////////////////// // Vector functions - Created by Jurgen Westerhof 2024 // https://turtletoy.net/turtle/d068ad6040 /////////////////////////////////////////////////////// class Vector { static add (a,b) { return a.map((v,i)=>v+b[i]); } static sub (a,b) { return a.map((v,i)=>v-b[i]); } static mul (a,b) { return a.map((v,i)=>v*b[i]); } static div (a,b) { return a.map((v,i)=>v/b[i]); } static scale(a,s) { return a.map(v=>v*s); } static det(m) { return m.length == 1? m[0][0]: m.length == 2 ? m[0][0]*m[1][1]-m[0][1]*m[1][0]: m[0].reduce((r,e,i) => r+(-1)**(i+2)*e*this.det(m.slice(1).map(c => c.filter((_,j) => i != j))),0); } static angle(a) { return Math.PI - Math.atan2(a[1], -a[0]); } //compatible with turtletoy heading static rot2d(angle) { return [[Math.cos(angle), -Math.sin(angle)], [Math.sin(angle), Math.cos(angle)]]; } static rot3d(yaw,pitch,roll) { return [[Math.cos(yaw)*Math.cos(pitch), Math.cos(yaw)*Math.sin(pitch)*Math.sin(roll)-Math.sin(yaw)*Math.cos(roll), Math.cos(yaw)*Math.sin(pitch)*Math.cos(roll)+Math.sin(yaw)*Math.sin(roll)],[Math.sin(yaw)*Math.cos(pitch), Math.sin(yaw)*Math.sin(pitch)*Math.sin(roll)+Math.cos(yaw)*Math.cos(roll), Math.sin(yaw)*Math.sin(pitch)*Math.cos(roll)-Math.cos(yaw)*Math.sin(roll)],[-Math.sin(pitch), Math.cos(pitch)*Math.sin(roll), Math.cos(pitch)*Math.cos(roll)]]; } static trans(matrix,a) { return a.map((v,i) => a.reduce((acc, cur, ci) => acc + cur * matrix[ci][i], 0)); } //Mirror vector a in a ray through [0,0] with direction mirror static mirror2d(a,mirror) { return [Math.atan2(...mirror)].map(angle => this.trans(this.rot2d(angle), this.mul([-1,1], this.trans(this.rot2d(-angle), a)))).pop(); } static approx(a,b,p) { return this.len(this.sub(a,b)) < (p === undefined? .001: p); } static norm (a) { return this.scale(a,1/this.len(a)); } static len (a) { return Math.hypot(...a); } static lenSq (a) { return a.reduce((a,c)=>a+c**2,0); } static lerp (a,b,t) { return a.map((v, i) => v*(1-t) + b[i]*t); } static dist (a,b) { return Math.hypot(...this.sub(a,b)); } static dot (a,b) { return a.reduce((a,c,i) => a+c*b[i], 0); } static cross(...ab) { return ab[0].map((e, i) => ab.map(v => v.filter((ee, ii) => ii != i))).map((m,i) => (i%2==0?-1:1)*this.det(m)); } } this.V = Vector; class Intersection2D { //a-start, a-direction, b-start, b-direction //returns false on no intersection or [[intersection:x,y], scalar a-direction, scalar b-direction static info(as, ad, bs, bd) { const d = V.sub(bs, as), det = -V.det([bd, ad]); if(det === 0) return false; const res = [V.det([d, bd]) / det, V.det([d, ad]) / det]; return [V.add(as, V.scale(ad, res[0])), ...res]; } static ray(a, b, c, d) { return this.info(a, b, c, d); } static segment(a,b,c,d, inclusiveStart = true, inclusiveEnd = true) { const i = this.info(a, V.sub(b, a), c, V.sub(d, c)); return i === false? false: ( (inclusiveStart? 0<=i[1] && 0<=i[2]: 0<i[1] && 0<i[2]) && (inclusiveEnd? i[1]<=1 && i[2]<=1: i[1]<1 && i[2]<1) )?i[0]:false; } } this.Intersection = Intersection2D; } } this.PolygonHatching = PolygonHatching; class LineHatching extends PolygonHatching { constructor(angle, distance, inp = 0, gradientStops = [ [[0,0], 0], [[0, -100], .5]]) { super(); console.log(gradientStops); const h=Math.sin(angle)*distance,o=Math.cos(angle)*distance,a=200*Math.sin(angle),i=200*Math.cos(angle); this.segments = Array.from({length: 150/distance}).flatMap((x,y,z,t=.5+y) => { const f1 = [h*t+i+inp*(Math.random()-.5),o*t-a+inp*(Math.random()-.5)]; const t1 = [h*t-i+inp*(Math.random()-.5),o*t+a+inp*(Math.random()-.5)]; const f2 = [-h*t+i+inp*(Math.random()-.5),-o*t-a+inp*(Math.random()-.5)]; const t2 = [-h*t-i+inp*(Math.random()-.5),-o*t+a+inp*(Math.random()-.5)]; const i1 = Intersection.info(f1, V.sub(t1, f1), gradientStops[0][0], V.sub(gradientStops[1][0], gradientStops[0][0])); const i2 = Intersection.info(f2, V.sub(t2, f2), gradientStops[0][0], V.sub(gradientStops[1][0], gradientStops[0][0])); return [ [ f1, t1, i1[2] <= 0? gradientStops[0][1]: (1 <= i1[2]? gradientStops[1][1]: N.lerp(gradientStops[0][1], gradientStops[1][1], i1[2])) ], [ f2, t2, i2[2] <= 0? gradientStops[0][1]: (1 <= i2[2]? gradientStops[1][1]: N.lerp(gradientStops[0][1], gradientStops[1][1], i2[2])) ], ]; }); } } this.LineHatching = LineHatching; //////////////////////////////////////////////////// first gen // extending PolygonHatching class GradientCircularHatching extends PolygonHatching { constructor(turtle, distance = 360, center = [0,0], precision = 1, gradientStops = [[0, 1]]) { super(); this.turtle = turtle; this.dist = typeof distance == 'function'? distance: (c) => distance; this.center = center; this.precision = precision; this.gradientStops = gradientStops; } hatch(polygonsClass, thePolygonToHatch) { const hp = new polygonsClass; hp.cp.push(...thePolygonToHatch.aabb);//[-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); let gsIdx = 0; const opacities = []; for(let j = 0, r = this.dist(j)/2; r < 301; r+=this.dist(j++)) { const opacity = 1; while(this.gradientStops[gsIdx][0] <= r && gsIdx < this.gradientStops.length - 1) { gsIdx++; } if(gsIdx == this.gradientStops.length) { opacities.push(this.gradientStops[this.gradientStops.length - 1][1]); continue; } if(gsIdx == 0) { opacities.push(1); continue; } opacities.push(N.lerp( this.gradientStops[gsIdx - 1][1], this.gradientStops[gsIdx][1], (r - this.gradientStops[gsIdx - 1][0]) / (this.gradientStops[gsIdx][0] - this.gradientStops[gsIdx - 1][0]) )); } for(let j = 0, r = this.dist(j)/2; r < 301; r+=this.dist(j++)) { const opacity = opacities[j];//Math.min(1, Math.max(0, r / 20)); const segments = []; for(let i = 0, max = Math.max(12, 2*Math.PI*r/this.precision | 0); i < max; i++) { segments.push([ [this.center[0]+r*Math.sin(i*2*Math.PI/max),this.center[1]+r*-Math.cos(i*2*Math.PI/max)], [this.center[0]+r*Math.sin((i+1)*2*Math.PI/max),this.center[1]+r*-Math.cos((i+1)*2*Math.PI/max)], opacity ]); } segments.forEach(e => hp.dp.push(e)); hp.boolean(thePolygonToHatch,!1); const dpLen = thePolygonToHatch.dp.length; //for(let j = 0; j < hp.dp.length; j++) { // thePolygonToHatch.dpOpacity[dpLen+j] = opacity/4; //} //console.log('dp', hp.dp) thePolygonToHatch.dp=[...thePolygonToHatch.dp,...hp.dp]; hp.dp = []; } return; } } this.GradientCircularHatching = GradientCircularHatching } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // (Polygon binning by Lionel Lemarie 2021) https://turtletoy.net/turtle/95f33bd383 // (Delegated Hatching by Jurgen Westerhof 2024) https://turtletoy.net/turtle/d068ad6040 // https://turtletoy.net/turtle/a5befa1f8d // // // HEAVILY MODIFIED TO ACCOMODATE BALE OPACITY // making it possibly incompatible withother code using // the original version of this code // // // const polygons = new Polygons(); // const p = polygons.create(); // polygons.draw(turtle, p); // polygons.list(); // // p.addPoints(...[[x,y],]); // p.addSegments(...[[x,y],]); // p.addOutline(); // p.addHatching(angle, distance); OR p.addHatching(HatchObject); where HatchObject has a method 'hatch(PolygonClass, thisPolygonInstance)' // p.inside([x,y]); // p.boolean(polygon, diff = true); // p.segment_intersect([x,y], [x,y], [x,y], [x,y]); //////////////////////////////////////////////////////////////// function Polygons(){ const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{ #opacity = 1; constructor(){ this.cp=[],this.dp=[],this.aabb=[],this.dpOpacity=[] } addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]} set opacity(op) { if(op < 0 || 1 < op) throw new Error(`0 <= Opacity <= 1, got ${op}`); this.#opacity = op; } get opacity() { return this.#opacity; } addSegments(...t){ for(let i = 0; i < t.length; i+=2) { this.dp.push([t[i], t[i+1], this.#opacity]); } } addOutline(){ for(let t = 0, s = this.cp.length; t < s; t++) { this.dp.push([this.cp[t], this.cp[(t+1)%s], this.#opacity]); } } draw(t){ const op = t.opacity; for(let s = 0, e = this.dp.length; s < e; s++) { t.setOpacity(this.dp[s][2]); t.jump(this.dp[s][0]); t.goto(this.dp[s][1]); } /* for(let s=0,e=this.dp.length;s<e;s+=2) { t.setOpacity(this.dpOpacity[s] == undefined || this.dpOpacity[s] == null? 1: this.dpOpacity[s]); t.jump(this.dp[s]); t.goto(this.dp[s+1]); } */ t.setOpacity(op); } addHatching(t, s) { if(typeof t == 'object') return t.hatch(n, this); const e=new n; e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t); for(let t=.5;t<150/s;t++) { e.dp.push([[h*t+i,o*t-a],[h*t-i,o*t+a], this.#opacity]); e.dp.push([[-h*t+i,-o*t-a],[-h*t-i,-o*t+a], this.#opacity]); } e.boolean(this,!1); this.dp=[...this.dp,...e.dp] } inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s} boolean(t,s=!0){ const e=[]; for(let dpIdx=0,h=this.dp.length;dpIdx<h;dpIdx++){ const h=this.dp[dpIdx][0],o=this.dp[dpIdx][1],a=[]; for(let s=0,e=t.cp.length;s<e;s++){ const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]); !1!==n&&a.push(n) } if(0===a.length) s===!t.inside(h)&&e.push([h,o,this.dp[dpIdx][2]]); else { a.push(h,o); const n=o[0]-h[0],i=o[1]-h[1]; a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i); for(let n=0;n<a.length-1;n++) (a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001 && s===!t.inside([(a[n][0]+a[n+1][0])/2, (a[n][1]+a[n+1][1])/2]) && e.push([a[n],a[n+1],this.dp[dpIdx][2]]) } } return(this.dp=e).length>0 } segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]} }; return{ list:()=>t, create:()=>new n, draw:(n,h,o=!0)=>{ reducedPolygonList=function(n){ const h={},o=200/s; for(var a=0;a<s;a++){ const c=a*o-100,r=[0,c,200,c+o]; if(!(n[3]<r[1]||n[1]>r[3])) for(var i=0;i<s;i++){ const c=i*o-100; r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{ const e=t[s]; n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||(h[s]=1) }) } } return Array.from(Object.keys(h),s=>t[s]) }(h.aabb); for(let t=0;t<reducedPolygonList.length&&h.boolean(reducedPolygonList[t]);t++); h.draw(n),o&&function(n){ t.push(n); const h=t.length-1,o=200/s; e.forEach((t,e)=>{ const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o]; c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h) }) }(h) } } } // Below is automatically maintained by Turtlelib 1.0 // Changes below this comment might interfere with its correct functioning. function turtlelib_init() { turtlelib_ns_c6665b0e9b_Jurgen_Vector_Math(); turtlelib_ns_13b81fd40e_Jurgen_Randomness(); turtlelib_ns_f1d1cac336_Jurgen_Numbers(); turtlelib_ns_c5f8fa95ed_Jurgen_Intersection(); } // Turtlelib Jurgen Vector Math v 4 - start - {"id":"c6665b0e9b","package":"Jurgen","name":"Vector Math","version":"4"} function turtlelib_ns_c6665b0e9b_Jurgen_Vector_Math() { ///////////////////////////////////////////////////////// // Vector functions - Created by Jurgen Westerhof 2024 // ///////////////////////////////////////////////////////// class Vector { static add (a,b) { return a.map((v,i)=>v+b[i]); } static sub (a,b) { return a.map((v,i)=>v-b[i]); } static mul (a,b) { return a.map((v,i)=>v*b[i]); } static div (a,b) { return a.map((v,i)=>v/b[i]); } static scale(a,s) { return a.map(v=>v*s); } static det(m) { return m.length == 1? m[0][0]: m.length == 2 ? m[0][0]*m[1][1]-m[0][1]*m[1][0]: m[0].reduce((r,e,i) => r+(-1)**(i+2)*e*this.det(m.slice(1).map(c => c.filter((_,j) => i != j))),0); } static angle(a) { return Math.PI - Math.atan2(a[1], -a[0]); } //compatible with turtletoy heading static rot2d(angle) { return [[Math.cos(angle), -Math.sin(angle)], [Math.sin(angle), Math.cos(angle)]]; } static rot3d(yaw,pitch,roll) { return [[Math.cos(yaw)*Math.cos(pitch), Math.cos(yaw)*Math.sin(pitch)*Math.sin(roll)-Math.sin(yaw)*Math.cos(roll), Math.cos(yaw)*Math.sin(pitch)*Math.cos(roll)+Math.sin(yaw)*Math.sin(roll)],[Math.sin(yaw)*Math.cos(pitch), Math.sin(yaw)*Math.sin(pitch)*Math.sin(roll)+Math.cos(yaw)*Math.cos(roll), Math.sin(yaw)*Math.sin(pitch)*Math.cos(roll)-Math.cos(yaw)*Math.sin(roll)],[-Math.sin(pitch), Math.cos(pitch)*Math.sin(roll), Math.cos(pitch)*Math.cos(roll)]]; } static trans(matrix,a) { return a.map((v,i) => a.reduce((acc, cur, ci) => acc + cur * matrix[ci][i], 0)); } //Mirror vector a in a ray through [0,0] with direction mirror static mirror2d(a,mirror) { return [Math.atan2(...mirror)].map(angle => this.trans(this.rot2d(angle), this.mul([-1,1], this.trans(this.rot2d(-angle), a)))).pop(); } static equals(a,b) { return !a.some((e, i) => e != b[i]); } static approx(a,b,p) { return this.len(this.sub(a,b)) < (p === undefined? .001: p); } static norm (a) { return this.scale(a,1/this.len(a)); } static len (a) { return Math.hypot(...a); } static lenSq (a) { return a.reduce((a,c)=>a+c**2,0); } static lerp (a,b,t) { return a.map((v, i) => v*(1-t) + b[i]*t); } static dist (a,b) { return Math.hypot(...this.sub(a,b)); } static dot (a,b) { return a.reduce((a,c,i) => a+c*b[i], 0); } static cross(...ab) { return ab[0].map((e, i) => ab.map(v => v.filter((ee, ii) => ii != i))).map((m,i) => (i%2==0?-1:1)*this.det(m)); } static clamp(a,min,max) { return a.map((e,i) => Math.min(Math.max(e, min[i]), max[i])) }; static rotateClamp(a,min,max) { return a.map((e,i) => {const d = max[i]-min[i];if(d == 0) return min[i];while(e < min[i]) { e+=d; }while(e > max[i]) { e-=d; }return e;}); } } this.V = Vector; } // Turtlelib Jurgen Vector Math v 4 - end // Turtlelib Jurgen Randomness v 2 - start - {"id":"13b81fd40e","package":"Jurgen","name":"Randomness","version":"2"} function turtlelib_ns_13b81fd40e_Jurgen_Randomness() { /////////////////////////////////////////////////////////////// // Pseudorandom functions - Created by Jurgen Westerhof 2024 // /////////////////////////////////////////////////////////////// class Random { static #apply(seed) { // Seedable random number generator by David Bau: http://davidbau.com/archives/2010/01/30/random_seeds_coded_hints_and_quintillions.html !function(a,b,c,d,e,f,g,h,i){function j(a){var b,c=a.length,e=this,f=0,g=e.i=e.j=0,h=e.S=[];for(c||(a=[c++]);d>f;)h[f]=f++;for(f=0;d>f;f++)h[f]=h[g=s&g+a[f%c]+(b=h[f])],h[g]=b;(e.g=function(a){for(var b,c=0,f=e.i,g=e.j,h=e.S;a--;)b=h[f=s&f+1],c=c*d+h[s&(h[f]=h[g=s&g+b])+(h[g]=b)];return e.i=f,e.j=g,c})(d)}function k(a,b){var c,d=[],e=typeof a;if(b&&"object"==e)for(c in a)try{d.push(k(a[c],b-1))}catch(f){}return d.length?d:"string"==e?a:a+"\0"}function l(a,b){for(var c,d=a+"",e=0;e<d.length;)b[s&e]=s&(c^=19*b[s&e])+d.charCodeAt(e++);return n(b)}function m(c){try{return o?n(o.randomBytes(d)):(a.crypto.getRandomValues(c=new Uint8Array(d)),n(c))}catch(e){return[+new Date,a,(c=a.navigator)&&c.plugins,a.screen,n(b)]}}function n(a){return String.fromCharCode.apply(0,a)}var o,p=c.pow(d,e),q=c.pow(2,f),r=2*q,s=d-1,t=c["seed"+i]=function(a,f,g){var h=[];f=1==f?{entropy:!0}:f||{};var o=l(k(f.entropy?[a,n(b)]:null==a?m():a,3),h),s=new j(h);return l(n(s.S),b),(f.pass||g||function(a,b,d){return d?(c[i]=a,b):a})(function(){for(var a=s.g(e),b=p,c=0;q>a;)a=(a+c)*d,b*=d,c=s.g(1);for(;a>=r;)a/=2,b/=2,c>>>=1;return(a+c)/b},o,"global"in f?f.global:this==c)};if(l(c[i](),b),g&&g.exports){g.exports=t;try{o=require("crypto")}catch(u){}}else h&&h.amd&&h(function(){return t})}(this,[],Math,256,6,52,"object"==typeof module&&module,"function"==typeof define&&define,"random"); Math.seedrandom(seed); } static seedRandom() { this.#apply(new Date().getMilliseconds()); } static seedDaily() { this.#apply(new Date().toDateString()); } static seed(seed) { this.#apply(seed); } static getInt(min, max) { if(max == undefined) {max = min + 1; min = 0; } const [mi, ma] = [Math.min(min, max), Math.max(min, max)]; return (mi + Math.random() * (ma - mi)) | 0;} static get(min, max) {if(min == undefined) {return Math.random();}if(max == undefined) {max = min;min = 0;}const [mi, ma] = [Math.min(min, max), Math.max(min, max)];return mi + Math.random() * (ma - mi);} static fraction(whole) { return this.get(0, whole); } static getAngle(l = 1) { return l * this.get(0, 2*Math.PI); } // Standard Normal variate using Box-Muller transform. static getGaussian(mean=.5, stdev=.1) {const u = 1 - this.get(); /* Converting [0,1) to (0,1] */const v = this.get();const z = ( -2.0 * Math.log( u ) )**.5 * Math.cos( 2.0 * Math.PI * v );/* Transform to the desired mean and standard deviation: */return z * stdev + mean;} static skew(value, skew = 0) { /*skew values (from 0 to 1) by a skew from -1 to 1, respectively right and left skewed (resp more values to left or to right), 0 is not skewed*/return (skew < 0)? value - (this.skew(1-value, -skew) - (1-value)): Math.pow(value, 1-Math.abs(skew));} static getNormalDistributed(skew = 0) { /*skew values (from 0 to 1) by a skew from -1 to 1, respectively right and left skewed (resp more values to left or to right), 0 is not skewed*/let v = -1;while(v < 0 || 1 <= v) { v = this.getGaussian(.5, .1) };return this.skew(v, skew);} } this.R = Random; } // Turtlelib Jurgen Randomness v 2 - end // Turtlelib Jurgen Numbers v 2 - start - {"id":"f1d1cac336","package":"Jurgen","name":"Numbers","version":"2"} function turtlelib_ns_f1d1cac336_Jurgen_Numbers() { ///////////////////////////////////////////////////////// // Number functions - Created by Jurgen Westerhof 2024 // ///////////////////////////////////////////////////////// class Numbers { static approx(a,b,p) { return Math.abs(a-b) < (p === undefined? .001: p); } static clamp(a, min, max) { return Math.min(Math.max(a, min), max); } static rotateClamp(a, min, max) { if(min == max) return min;while (a < min) { a+=(max-min); }while (a > max) { a-=(max-min); }return a;} static lerp(a, b, t) { return V.lerp([a], [b], t).pop(); }; } this.N = Numbers; } // Turtlelib Jurgen Numbers v 2 - end // Turtlelib Jurgen Intersection v 4 - start - {"id":"c5f8fa95ed","package":"Jurgen","name":"Intersection","version":"4"} function turtlelib_ns_c5f8fa95ed_Jurgen_Intersection() { /////////////////////////////////////////////////////////////// // Intersection functions - Created by Jurgen Westerhof 2024 // /////////////////////////////////////////////////////////////// class Intersection { //a-start, a-direction, b-start, b-direction //returns false on no intersection or [[intersection:x,y], scalar a-direction, scalar b-direction static info(as, ad, bs, bd) { const d = V.sub(bs, as), det = -V.det([bd, ad]); if(det === 0) return false; const res = [V.det([d, bd]) / det, V.det([d, ad]) / det]; return [V.add(as, V.scale(ad, res[0])), ...res]; } static ray(a, b, c, d) { return this.info(a, b, c, d); } static segment(a,b,c,d, inclusiveStart = true, inclusiveEnd = true) { const i = this.info(a, V.sub(b, a), c, V.sub(d, c)); return i === false? false: ( (inclusiveStart? 0<=i[1] && 0<=i[2]: 0<i[1] && 0<i[2]) && (inclusiveEnd? i[1]<=1 && i[2]<=1: i[1]<1 && i[2]<1) )?i[0]:false;} static tour(tour, segmentStart, segmentDirection) { return tour.map((e, i, a) => [i, this.info(e, V.sub(a[(i+1)%a.length], e), segmentStart, segmentDirection)]).filter(e => e[1] !== false && 0 <= e[1][1] && e[1][1] <= 1).filter(e => 0 <= e[1][2]).map(e => ({position: e[1][0],tourIndex: e[0],tourSegmentPortion: e[1][1],segmentPortion: e[1][2],}));} static inside(tour, pt) { return tour.map((e,i,a) => this.segment(e, a[(i+1)%a.length], pt, [Number.MAX_SAFE_INTEGER, 0], true, false)).filter(e => e !== false).length % 2 == 1; } static circles(centerA, radiusA, centerB, radiusB) {const result = {intersect_count: 0,intersect_occurs: true,one_is_in_other: false,are_equal: false,point_1: [null, null],point_2: [null, null],};const dx = centerB[0] - centerA[0];const dy = centerB[1] - centerA[1];const dist = Math.hypot(dy, dx);if (dist > radiusA + radiusB) {result.intersect_occurs = false;}if (dist < Math.abs(radiusA - radiusB) && !N.approx(dist, Math.abs(radiusA - radiusB))) {result.intersect_occurs = false;result.one_is_in_other = true;}if (V.approx(centerA, centerB) && radiusA === radiusB) {result.are_equal = true;}if (result.intersect_occurs) {const centroid = (radiusA**2 - radiusB**2 + dist * dist) / (2.0 * dist);const x2 = centerA[0] + (dx * centroid) / dist;const y2 = centerA[1] + (dy * centroid) / dist;const prec = 10000;const h = (Math.round(radiusA**2 * prec)/prec - Math.round(centroid**2 * prec)/prec)**.5;const rx = -dy * (h / dist);const ry = dx * (h / dist);result.point_1 = [x2 + rx, y2 + ry];result.point_2 = [x2 - rx, y2 - ry];if (result.are_equal) {result.intersect_count = Infinity;} else if (V.equals(result.point_1, result.point_2)) {result.intersect_count = 1;} else {result.intersect_count = 2;}}return result;} } this.Intersection = Intersection; } // Turtlelib Jurgen Intersection v 4 - end