or sunset...
Log in to post a comment.
const largePeriod = 350; //min=1 max=500 step=1
const largeAmplitude = 35; //min=0 max=50 step=1
const smallPeriod = 100; //min=1 max=500 step=1
const smallAmplitude = 10; //min=0 max=50 step=1
const microPeriod = 7; //min=1 max=500 step=1
const microAmplitude = 2; //min=0 max=10 step=1
const ridgeCount = 10; //min=1 max=10 step=1
const distExp = 1.1; //min=0 max=5 step=.1
const sunRadius = 20; //min=0 max=50 step=.1
const sunFlareRadius = 150; //min=50 max=300 step=1
const sunFlareCount = 18; //min=3 max=30 step=1
const sunFlareOffset = 5; //min=0 max=360 step=.1
const gradientDistance = .2; //min=.2 max=10 step=.1
// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(.04);
// Global code will be evaluated once.
turtlelib_init();
loadHatcheryNamespace();
R.seed('test');
const polygons = new Polygons();
const turtle = new Bale(.04);
const s = Simplex().createNoise2D();
const ridges = Array.from({length: ridgeCount}).map((e, i) => {
const mY = (80 - Math.sin(i/(ridgeCount - 1) * Math.PI / 2) * 80);
const dist = 1 - (i / (ridgeCount - 1));
return Array.from({length: 201}).map((e, i) => [i-100,
mY +
(dist / 3)**distExp * largeAmplitude*s(i/((dist / 3)*largePeriod), 0 + mY)+
(dist / 1.5)**distExp * smallAmplitude*s(i/((dist / 1.5)*smallPeriod), 50 + mY)+
dist**distExp * microAmplitude*s(i/(dist*microPeriod), 100 + mY)
])
});
///console.log(ridges);
// The walk function will be called until it returns false.
let ridgePts = [];
function walk(i) {
const ridge = ridges[i];
turtle.setOpacity(1 - i/(ridges.length - 1))
const p = polygons.create();
ridgePts = [[-110, 110], [-110, ridge[0][1]], ...ridge, [110, ridge[ridge.length - 1][1]], [110, 110]];
p.opacity = 1 - i/(ridges.length - 1);
p.addPoints(...ridgePts);
p.addHatching(1, gradientDistance);
polygons.draw(turtle, p);
turtle[i == 0? 'jump': 'goto'](ridges[i]);
if(i == ridges.length - 2) {
const maxRidgeY = ridgePts.reduce((a, c) => Math.max(a, c[1]), -100);
const radPerFlare = 2 * Math.PI / sunFlareCount;
const subSun = [];
const subFlare = [];
for(let j = 0, max = radPerFlare * sunRadius | 0; j < max; j++) {
subSun.push([
sunRadius * Math.cos(.5 * radPerFlare * j / (max - 1)),
sunRadius * Math.sin(.5 * radPerFlare * j / (max - 1))
]);
}
for(let j = 0, max = radPerFlare * sunFlareRadius | 0; j < max; j++) {
subFlare.push([
sunFlareRadius * Math.cos(.5 * radPerFlare + .5 * radPerFlare * j / (max - 1)),
sunFlareRadius * Math.sin(.5 * radPerFlare + .5 * radPerFlare * j / (max - 1))
]);
}
const rotX = sunFlareOffset * Math.PI / 180;
const sunPts = Array.from({length: sunFlareCount})
.flatMap((e, i) => [...subSun, ...subFlare].map(pt => V.trans(V.rot2d(rotX + -i * Math.PI * 2 / sunFlareCount), pt)))
.filter(pt => pt[1] < maxRidgeY);
const sun = polygons.create();
sun.addPoints(...sunPts);
//sun.opacity = .25;
//sun.addHatching(1, 1);
sun.addHatching(new GradientCircularHatching(turtle, gradientDistance, [0, 0], 1, [[0, 0], [sunRadius + .25 * (sunFlareRadius - sunRadius), 0], [sunFlareRadius, .5]]))
//sun.opacity = 1;
//sun.addOutline();
polygons.draw(turtle, sun);
const bgPts = [[-101, maxRidgeY], [-101, -101], [101, -101], [101, maxRidgeY]];
const bg = polygons.create();
bg.addPoints(...bgPts);
bg.opacity = .5;
bg.addHatching(new LineHatching(0, gradientDistance, 0, [ [[0,-10], .2], [[0, -100], .5]]));
polygons.draw(turtle, bg);
}
return i < ridges.length - 1;
}
////////////////////////////////////////////////////////////////
// Bale utility code 2.0 - Created by Jurgen Westerhof 2025
// https://turtletoy.net/turtle/7b8c486a30
// (Ab)using the opacity, usage:
// Canvas.setpenopacity(sceneOpacity);
// const bale = new Bale(sceneOpacity);
// Then use bale wherever you would use a turtle object to 'draw'
// in 'opacity' x (i.e Polygon hatching with a bale object and
// .25 interspacing), or:
// bale.setOpacity(.5);
// bale.jump(0,0);
// bale.goto(40,0);
////////////////////////////////////////////////////////////////
function Bale(sceneOpacity, turtleClass = Turtle) {
class Turtle {
#useTurtleCount = 0;
#turtles = [];
#sceneOpacity = 0;
#opacity = 1;
#useTurtleCounts = {};
constructor(sceneOpacity, turtleClass) {
this.#sceneOpacity = sceneOpacity;
this.#turtles = Array.from({length: Math.max(1, this.getTurtleCountForOpacity(1))}, (e,i) => new turtleClass());
this.#useTurtleCount = this.#turtles.length;
}
//set opacity(op) {
//
//}
get opacity() {
return this.#opacity;
}
setOpacity(opacity) {
if(opacity < 0 || 1 < opacity) {
throw new Error(`Out of bounds opacity. 0 <= opacity <= 1, got ${opacity}`);
}
this.#opacity = opacity;
if(this.#useTurtleCounts[''+this.#opacity] === undefined) {
this.#useTurtleCounts[''+this.#opacity] = this.getTurtleCountForOpacity(opacity);
}
this.#useTurtleCount = this.#useTurtleCounts[''+this.#opacity];
}
getProp(prop) {
return this.#turtles[0][prop];
}
invokeProp(action, a, b, c, d, e, f, g) {
return this.#turtles.reduce((acc, turtle, i) => turtle[action == 'goto' && this.#useTurtleCount <= i? 'jump': action](a, b, c, d, e, f, g), 0);
}
getTurtleCountForOpacity(targetOpacity) {
if (targetOpacity <= 0) return 0;
if (targetOpacity >= .5 && this.#turtles.length == 1) return 1;
return Math.round(Math.log(1 - Math.min(.99, targetOpacity)) / Math.log(1 - this.#sceneOpacity));
}
}
const TurtleProxy = {
get(target, prop, receiver) {
switch(prop) {
case 'setOpacity':
return (opacity) => target.setOpacity(opacity);
case 'clone':
throw new Error('Cloning not implemented');
case 'position': //for faster processing, known functions
case 'pos': //of a turtle that don't change the
case 'xcor': //the state of a turtle but just tell
case 'x': //the state of a turtle, there's no need
case 'ycor': //to iterate over the whole bale but
case 'y': //only return the value from the first
case 'heading': //turtle in the bale. That's where these
case 'h': //9 cases are an exception to the rest
case 'isdown': //of a turtle's functions
return target.getProp(prop);
default:
return (a, b, c, d, e, f, g) => target.invokeProp(prop, a, b, c, d, e, f, g);
}
},
};
return new Proxy(new Turtle(sceneOpacity, turtleClass), TurtleProxy);
}
// Ported https://www.skypack.dev/view/simplex-noise
function Simplex() {
const F2 = 0.5 * (Math.sqrt(3) - 1);
const G2 = (3 - Math.sqrt(3)) / 6;
const F3 = 1 / 3;
const G3 = 1 / 6;
const F4 = (Math.sqrt(5) - 1) / 4;
const G4 = (5 - Math.sqrt(5)) / 20;
const fastFloor = (x) => Math.floor(x) | 0;
const grad2 = /* @__PURE__ */ new Float64Array([1,1,-1,1,1,-1,-1,-1,1,0,-1,0,1,0,-1,0,0,1,0,-1,0,1,0,-1]);
const grad3 = /* @__PURE__ */ new Float64Array([1,1,0,-1,1,0,1,-1,0,-1,-1,0,1,0,1,-1,0,1,1,0,-1,-1,0,-1,0,1,1,0,-1,1,0,1,-1,0,-1,-1]);
const grad4 = /* @__PURE__ */ new Float64Array([0,1,1,1,0,1,1,-1,0,1,-1,1,0,1,-1,-1,0,-1,1,1,0,-1,1,-1,0,-1,-1,1,0,-1,-1,-1,1,0,1,1,1,0,1,-1,1,0,-1,1,1,0,-1,-1,-1,0,1,1,-1,0,1,-1,-1,0,-1,1,-1,0,-1,-1,1,1,0,1,1,1,0,-1,1,-1,0,1,1,-1,0,-1,-1,1,0,1,-1,1,0,-1,-1,-1,0,1,-1,-1,0,-1,1,1,1,0,1,1,-1,0,1,-1,1,0,1,-1,-1,0,-1,1,1,0,-1,1,-1,0,-1,-1,1,0,-1,-1,-1,0]);
function createNoise2D(random = Math.random) {
const perm = buildPermutationTable(random);
const permGrad2x = new Float64Array(perm).map((v) => grad2[v % 12 * 2]);
const permGrad2y = new Float64Array(perm).map((v) => grad2[v % 12 * 2 + 1]);
return function noise2D(x, y) {
let n0 = 0;
let n1 = 0;
let n2 = 0;
const s = (x + y) * F2;
const i = fastFloor(x + s);
const j = fastFloor(y + s);
const t = (i + j) * G2;
const X0 = i - t;
const Y0 = j - t;
const x0 = x - X0;
const y0 = y - Y0;
let i1, j1;
if (x0 > y0) {
i1 = 1;
j1 = 0;
} else {
i1 = 0;
j1 = 1;
}
const x1 = x0 - i1 + G2;
const y1 = y0 - j1 + G2;
const x2 = x0 - 1 + 2 * G2;
const y2 = y0 - 1 + 2 * G2;
const ii = i & 255;
const jj = j & 255;
let t0 = 0.5 - x0 * x0 - y0 * y0;
if (t0 >= 0) {
const gi0 = ii + perm[jj];
const g0x = permGrad2x[gi0];
const g0y = permGrad2y[gi0];
t0 *= t0;
n0 = t0 * t0 * (g0x * x0 + g0y * y0);
}
let t1 = 0.5 - x1 * x1 - y1 * y1;
if (t1 >= 0) {
const gi1 = ii + i1 + perm[jj + j1];
const g1x = permGrad2x[gi1];
const g1y = permGrad2y[gi1];
t1 *= t1;
n1 = t1 * t1 * (g1x * x1 + g1y * y1);
}
let t2 = 0.5 - x2 * x2 - y2 * y2;
if (t2 >= 0) {
const gi2 = ii + 1 + perm[jj + 1];
const g2x = permGrad2x[gi2];
const g2y = permGrad2y[gi2];
t2 *= t2;
n2 = t2 * t2 * (g2x * x2 + g2y * y2);
}
return 70 * (n0 + n1 + n2);
};
}
function createNoise3D(random = Math.random) {
const perm = buildPermutationTable(random);
const permGrad3x = new Float64Array(perm).map((v) => grad3[v % 12 * 3]);
const permGrad3y = new Float64Array(perm).map((v) => grad3[v % 12 * 3 + 1]);
const permGrad3z = new Float64Array(perm).map((v) => grad3[v % 12 * 3 + 2]);
return function noise3D(x, y, z) {
let n0, n1, n2, n3;
const s = (x + y + z) * F3;
const i = fastFloor(x + s);
const j = fastFloor(y + s);
const k = fastFloor(z + s);
const t = (i + j + k) * G3;
const X0 = i - t;
const Y0 = j - t;
const Z0 = k - t;
const x0 = x - X0;
const y0 = y - Y0;
const z0 = z - Z0;
let i1, j1, k1;
let i2, j2, k2;
if (x0 >= y0) {
if (y0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} else if (x0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
} else {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
}
} else {
if (y0 < z0) {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
} else if (x0 < z0) {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
} else {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
}
}
const x1 = x0 - i1 + G3;
const y1 = y0 - j1 + G3;
const z1 = z0 - k1 + G3;
const x2 = x0 - i2 + 2 * G3;
const y2 = y0 - j2 + 2 * G3;
const z2 = z0 - k2 + 2 * G3;
const x3 = x0 - 1 + 3 * G3;
const y3 = y0 - 1 + 3 * G3;
const z3 = z0 - 1 + 3 * G3;
const ii = i & 255;
const jj = j & 255;
const kk = k & 255;
let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
if (t0 < 0)
n0 = 0;
else {
const gi0 = ii + perm[jj + perm[kk]];
t0 *= t0;
n0 = t0 * t0 * (permGrad3x[gi0] * x0 + permGrad3y[gi0] * y0 + permGrad3z[gi0] * z0);
}
let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
if (t1 < 0)
n1 = 0;
else {
const gi1 = ii + i1 + perm[jj + j1 + perm[kk + k1]];
t1 *= t1;
n1 = t1 * t1 * (permGrad3x[gi1] * x1 + permGrad3y[gi1] * y1 + permGrad3z[gi1] * z1);
}
let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
if (t2 < 0)
n2 = 0;
else {
const gi2 = ii + i2 + perm[jj + j2 + perm[kk + k2]];
t2 *= t2;
n2 = t2 * t2 * (permGrad3x[gi2] * x2 + permGrad3y[gi2] * y2 + permGrad3z[gi2] * z2);
}
let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
if (t3 < 0)
n3 = 0;
else {
const gi3 = ii + 1 + perm[jj + 1 + perm[kk + 1]];
t3 *= t3;
n3 = t3 * t3 * (permGrad3x[gi3] * x3 + permGrad3y[gi3] * y3 + permGrad3z[gi3] * z3);
}
return 32 * (n0 + n1 + n2 + n3);
};
}
function createNoise4D(random = Math.random) {
const perm = buildPermutationTable(random);
const permGrad4x = new Float64Array(perm).map((v) => grad4[v % 32 * 4]);
const permGrad4y = new Float64Array(perm).map((v) => grad4[v % 32 * 4 + 1]);
const permGrad4z = new Float64Array(perm).map((v) => grad4[v % 32 * 4 + 2]);
const permGrad4w = new Float64Array(perm).map((v) => grad4[v % 32 * 4 + 3]);
return function noise4D(x, y, z, w) {
let n0, n1, n2, n3, n4;
const s = (x + y + z + w) * F4;
const i = fastFloor(x + s);
const j = fastFloor(y + s);
const k = fastFloor(z + s);
const l = fastFloor(w + s);
const t = (i + j + k + l) * G4;
const X0 = i - t;
const Y0 = j - t;
const Z0 = k - t;
const W0 = l - t;
const x0 = x - X0;
const y0 = y - Y0;
const z0 = z - Z0;
const w0 = w - W0;
let rankx = 0;
let ranky = 0;
let rankz = 0;
let rankw = 0;
if (x0 > y0)
rankx++;
else
ranky++;
if (x0 > z0)
rankx++;
else
rankz++;
if (x0 > w0)
rankx++;
else
rankw++;
if (y0 > z0)
ranky++;
else
rankz++;
if (y0 > w0)
ranky++;
else
rankw++;
if (z0 > w0)
rankz++;
else
rankw++;
const i1 = rankx >= 3 ? 1 : 0;
const j1 = ranky >= 3 ? 1 : 0;
const k1 = rankz >= 3 ? 1 : 0;
const l1 = rankw >= 3 ? 1 : 0;
const i2 = rankx >= 2 ? 1 : 0;
const j2 = ranky >= 2 ? 1 : 0;
const k2 = rankz >= 2 ? 1 : 0;
const l2 = rankw >= 2 ? 1 : 0;
const i3 = rankx >= 1 ? 1 : 0;
const j3 = ranky >= 1 ? 1 : 0;
const k3 = rankz >= 1 ? 1 : 0;
const l3 = rankw >= 1 ? 1 : 0;
const x1 = x0 - i1 + G4;
const y1 = y0 - j1 + G4;
const z1 = z0 - k1 + G4;
const w1 = w0 - l1 + G4;
const x2 = x0 - i2 + 2 * G4;
const y2 = y0 - j2 + 2 * G4;
const z2 = z0 - k2 + 2 * G4;
const w2 = w0 - l2 + 2 * G4;
const x3 = x0 - i3 + 3 * G4;
const y3 = y0 - j3 + 3 * G4;
const z3 = z0 - k3 + 3 * G4;
const w3 = w0 - l3 + 3 * G4;
const x4 = x0 - 1 + 4 * G4;
const y4 = y0 - 1 + 4 * G4;
const z4 = z0 - 1 + 4 * G4;
const w4 = w0 - 1 + 4 * G4;
const ii = i & 255;
const jj = j & 255;
const kk = k & 255;
const ll = l & 255;
let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
if (t0 < 0)
n0 = 0;
else {
const gi0 = ii + perm[jj + perm[kk + perm[ll]]];
t0 *= t0;
n0 = t0 * t0 * (permGrad4x[gi0] * x0 + permGrad4y[gi0] * y0 + permGrad4z[gi0] * z0 + permGrad4w[gi0] * w0);
}
let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
if (t1 < 0)
n1 = 0;
else {
const gi1 = ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]];
t1 *= t1;
n1 = t1 * t1 * (permGrad4x[gi1] * x1 + permGrad4y[gi1] * y1 + permGrad4z[gi1] * z1 + permGrad4w[gi1] * w1);
}
let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
if (t2 < 0)
n2 = 0;
else {
const gi2 = ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]];
t2 *= t2;
n2 = t2 * t2 * (permGrad4x[gi2] * x2 + permGrad4y[gi2] * y2 + permGrad4z[gi2] * z2 + permGrad4w[gi2] * w2);
}
let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
if (t3 < 0)
n3 = 0;
else {
const gi3 = ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]];
t3 *= t3;
n3 = t3 * t3 * (permGrad4x[gi3] * x3 + permGrad4y[gi3] * y3 + permGrad4z[gi3] * z3 + permGrad4w[gi3] * w3);
}
let t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
if (t4 < 0)
n4 = 0;
else {
const gi4 = ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]];
t4 *= t4;
n4 = t4 * t4 * (permGrad4x[gi4] * x4 + permGrad4y[gi4] * y4 + permGrad4z[gi4] * z4 + permGrad4w[gi4] * w4);
}
return 27 * (n0 + n1 + n2 + n3 + n4);
};
}
function buildPermutationTable(random) {
const tableSize = 512;
const p = new Uint8Array(tableSize);
for (let i = 0; i < tableSize / 2; i++) {
p[i] = i;
}
for (let i = 0; i < tableSize / 2 - 1; i++) {
const r = i + ~~(random() * (256 - i));
const aux = p[i];
p[i] = p[r];
p[r] = aux;
}
for (let i = 256; i < tableSize; i++) {
p[i] = p[i - 256];
}
return p;
}
class Simplex {
buildPermutationTable(random) { return buildPermutationTable(random); }
createNoise2D(random) { return createNoise2D(random); }
createNoise3D(random) { return createNoise3D(random); }
createNoise4D(random) { return createNoise4D(random); }
}
return new Simplex();
}
///////////////////////////////////////////////////////////////////
// Polygon Hatching utility code - Created by Jurgen Westerhof 2024
// https://turtletoy.net/turtle/d068ad6040
// ////////////////////////////////////////////////////////////////
// // To be used with modified Polygon Clipping utility code
// // Orginal: https://turtletoy.net/turtle/a5befa1f8d
// // Polygon binning: https://turtletoy.net/turtle/95f33bd383
// // Delegated Hatching: https://turtletoy.net/turtle/d068ad6040
///////////////////////////////////////////////////////////////////
function loadHatcheryNamespace() {
//for convenience on Turtletoy you can click the arrow to the right of the line number to collapse a class
//////////////////////////////////////////////////// root
class PolygonHatching {
constructor() {
if (this.constructor === PolygonHatching) {
throw new Error("PolygonHatching is an abstract class and can't be instantiated.");
}
this.minX = -100;
this.minY = -100;
this.maxX = 100;
this.maxY = 100;
this.width = 200;
this.height = 200;
this.segments = [];
this.init();
}
hatch(polygonsClass, thePolygonToHatch) {
const e = new polygonsClass;
e.cp.push(...thePolygonToHatch.aabb);//[-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);
this.addHatchSegments(e.dp);
e.boolean(thePolygonToHatch,!1);
thePolygonToHatch.dp=[...thePolygonToHatch.dp,...e.dp];
}
addHatchSegments(segments) {
this.getSegments().forEach(e => segments.push(e));
}
getSegments() { return this.segments; }
init() {
///////////////////////////////////////////////////////
// Vector functions - Created by Jurgen Westerhof 2024
// https://turtletoy.net/turtle/d068ad6040
///////////////////////////////////////////////////////
class Vector {
static add (a,b) { return a.map((v,i)=>v+b[i]); }
static sub (a,b) { return a.map((v,i)=>v-b[i]); }
static mul (a,b) { return a.map((v,i)=>v*b[i]); }
static div (a,b) { return a.map((v,i)=>v/b[i]); }
static scale(a,s) { return a.map(v=>v*s); }
static det(m) { return m.length == 1? m[0][0]: m.length == 2 ? m[0][0]*m[1][1]-m[0][1]*m[1][0]: m[0].reduce((r,e,i) => r+(-1)**(i+2)*e*this.det(m.slice(1).map(c => c.filter((_,j) => i != j))),0); }
static angle(a) { return Math.PI - Math.atan2(a[1], -a[0]); } //compatible with turtletoy heading
static rot2d(angle) { return [[Math.cos(angle), -Math.sin(angle)], [Math.sin(angle), Math.cos(angle)]]; }
static rot3d(yaw,pitch,roll) { return [[Math.cos(yaw)*Math.cos(pitch), Math.cos(yaw)*Math.sin(pitch)*Math.sin(roll)-Math.sin(yaw)*Math.cos(roll), Math.cos(yaw)*Math.sin(pitch)*Math.cos(roll)+Math.sin(yaw)*Math.sin(roll)],[Math.sin(yaw)*Math.cos(pitch), Math.sin(yaw)*Math.sin(pitch)*Math.sin(roll)+Math.cos(yaw)*Math.cos(roll), Math.sin(yaw)*Math.sin(pitch)*Math.cos(roll)-Math.cos(yaw)*Math.sin(roll)],[-Math.sin(pitch), Math.cos(pitch)*Math.sin(roll), Math.cos(pitch)*Math.cos(roll)]]; }
static trans(matrix,a) { return a.map((v,i) => a.reduce((acc, cur, ci) => acc + cur * matrix[ci][i], 0)); }
//Mirror vector a in a ray through [0,0] with direction mirror
static mirror2d(a,mirror) { return [Math.atan2(...mirror)].map(angle => this.trans(this.rot2d(angle), this.mul([-1,1], this.trans(this.rot2d(-angle), a)))).pop(); }
static approx(a,b,p) { return this.len(this.sub(a,b)) < (p === undefined? .001: p); }
static norm (a) { return this.scale(a,1/this.len(a)); }
static len (a) { return Math.hypot(...a); }
static lenSq (a) { return a.reduce((a,c)=>a+c**2,0); }
static lerp (a,b,t) { return a.map((v, i) => v*(1-t) + b[i]*t); }
static dist (a,b) { return Math.hypot(...this.sub(a,b)); }
static dot (a,b) { return a.reduce((a,c,i) => a+c*b[i], 0); }
static cross(...ab) { return ab[0].map((e, i) => ab.map(v => v.filter((ee, ii) => ii != i))).map((m,i) => (i%2==0?-1:1)*this.det(m)); }
}
this.V = Vector;
class Intersection2D {
//a-start, a-direction, b-start, b-direction
//returns false on no intersection or [[intersection:x,y], scalar a-direction, scalar b-direction
static info(as, ad, bs, bd) {
const d = V.sub(bs, as), det = -V.det([bd, ad]);
if(det === 0) return false;
const res = [V.det([d, bd]) / det, V.det([d, ad]) / det];
return [V.add(as, V.scale(ad, res[0])), ...res];
}
static ray(a, b, c, d) {
return this.info(a, b, c, d);
}
static segment(a,b,c,d, inclusiveStart = true, inclusiveEnd = true) {
const i = this.info(a, V.sub(b, a), c, V.sub(d, c));
return i === false? false: (
(inclusiveStart? 0<=i[1] && 0<=i[2]: 0<i[1] && 0<i[2])
&& (inclusiveEnd? i[1]<=1 && i[2]<=1: i[1]<1 && i[2]<1)
)?i[0]:false;
}
}
this.Intersection = Intersection2D;
}
}
this.PolygonHatching = PolygonHatching;
class LineHatching extends PolygonHatching {
constructor(angle, distance, inp = 0, gradientStops = [ [[0,0], 0], [[0, -100], .5]]) {
super();
console.log(gradientStops);
const h=Math.sin(angle)*distance,o=Math.cos(angle)*distance,a=200*Math.sin(angle),i=200*Math.cos(angle);
this.segments = Array.from({length: 150/distance}).flatMap((x,y,z,t=.5+y) => {
const f1 = [h*t+i+inp*(Math.random()-.5),o*t-a+inp*(Math.random()-.5)];
const t1 = [h*t-i+inp*(Math.random()-.5),o*t+a+inp*(Math.random()-.5)];
const f2 = [-h*t+i+inp*(Math.random()-.5),-o*t-a+inp*(Math.random()-.5)];
const t2 = [-h*t-i+inp*(Math.random()-.5),-o*t+a+inp*(Math.random()-.5)];
const i1 = Intersection.info(f1, V.sub(t1, f1), gradientStops[0][0], V.sub(gradientStops[1][0], gradientStops[0][0]));
const i2 = Intersection.info(f2, V.sub(t2, f2), gradientStops[0][0], V.sub(gradientStops[1][0], gradientStops[0][0]));
return [
[
f1,
t1,
i1[2] <= 0? gradientStops[0][1]: (1 <= i1[2]? gradientStops[1][1]: N.lerp(gradientStops[0][1], gradientStops[1][1], i1[2]))
],
[
f2,
t2,
i2[2] <= 0? gradientStops[0][1]: (1 <= i2[2]? gradientStops[1][1]: N.lerp(gradientStops[0][1], gradientStops[1][1], i2[2]))
],
];
});
}
}
this.LineHatching = LineHatching;
//////////////////////////////////////////////////// first gen
// extending PolygonHatching
class GradientCircularHatching extends PolygonHatching {
constructor(turtle, distance = 360, center = [0,0], precision = 1, gradientStops = [[0, 1]]) {
super();
this.turtle = turtle;
this.dist = typeof distance == 'function'? distance: (c) => distance;
this.center = center;
this.precision = precision;
this.gradientStops = gradientStops;
}
hatch(polygonsClass, thePolygonToHatch) {
const hp = new polygonsClass;
hp.cp.push(...thePolygonToHatch.aabb);//[-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);
let gsIdx = 0;
const opacities = [];
for(let j = 0, r = this.dist(j)/2; r < 301; r+=this.dist(j++)) {
const opacity = 1;
while(this.gradientStops[gsIdx][0] <= r && gsIdx < this.gradientStops.length - 1) {
gsIdx++;
}
if(gsIdx == this.gradientStops.length) {
opacities.push(this.gradientStops[this.gradientStops.length - 1][1]);
continue;
}
if(gsIdx == 0) {
opacities.push(1);
continue;
}
opacities.push(N.lerp(
this.gradientStops[gsIdx - 1][1],
this.gradientStops[gsIdx][1],
(r - this.gradientStops[gsIdx - 1][0]) / (this.gradientStops[gsIdx][0] - this.gradientStops[gsIdx - 1][0])
));
}
for(let j = 0, r = this.dist(j)/2; r < 301; r+=this.dist(j++)) {
const opacity = opacities[j];//Math.min(1, Math.max(0, r / 20));
const segments = [];
for(let i = 0, max = Math.max(12, 2*Math.PI*r/this.precision | 0); i < max; i++) {
segments.push([
[this.center[0]+r*Math.sin(i*2*Math.PI/max),this.center[1]+r*-Math.cos(i*2*Math.PI/max)],
[this.center[0]+r*Math.sin((i+1)*2*Math.PI/max),this.center[1]+r*-Math.cos((i+1)*2*Math.PI/max)],
opacity
]);
}
segments.forEach(e => hp.dp.push(e));
hp.boolean(thePolygonToHatch,!1);
const dpLen = thePolygonToHatch.dp.length;
//for(let j = 0; j < hp.dp.length; j++) {
// thePolygonToHatch.dpOpacity[dpLen+j] = opacity/4;
//}
//console.log('dp', hp.dp)
thePolygonToHatch.dp=[...thePolygonToHatch.dp,...hp.dp];
hp.dp = [];
}
return;
}
}
this.GradientCircularHatching = GradientCircularHatching
}
////////////////////////////////////////////////////////////////
// Polygon Clipping utility code - Created by Reinder Nijhoff 2019
// (Polygon binning by Lionel Lemarie 2021) https://turtletoy.net/turtle/95f33bd383
// (Delegated Hatching by Jurgen Westerhof 2024) https://turtletoy.net/turtle/d068ad6040
// https://turtletoy.net/turtle/a5befa1f8d
//
//
// HEAVILY MODIFIED TO ACCOMODATE BALE OPACITY
// making it possibly incompatible withother code using
// the original version of this code
//
//
// const polygons = new Polygons();
// const p = polygons.create();
// polygons.draw(turtle, p);
// polygons.list();
//
// p.addPoints(...[[x,y],]);
// p.addSegments(...[[x,y],]);
// p.addOutline();
// p.addHatching(angle, distance); OR p.addHatching(HatchObject); where HatchObject has a method 'hatch(PolygonClass, thisPolygonInstance)'
// p.inside([x,y]);
// p.boolean(polygon, diff = true);
// p.segment_intersect([x,y], [x,y], [x,y], [x,y]);
////////////////////////////////////////////////////////////////
function Polygons(){
const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{
#opacity = 1;
constructor(){
this.cp=[],this.dp=[],this.aabb=[],this.dpOpacity=[]
}
addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]}
set opacity(op) {
if(op < 0 || 1 < op) throw new Error(`0 <= Opacity <= 1, got ${op}`);
this.#opacity = op;
}
get opacity() {
return this.#opacity;
}
addSegments(...t){
for(let i = 0; i < t.length; i+=2) {
this.dp.push([t[i], t[i+1], this.#opacity]);
}
}
addOutline(){
for(let t = 0, s = this.cp.length; t < s; t++) {
this.dp.push([this.cp[t], this.cp[(t+1)%s], this.#opacity]);
}
}
draw(t){
const op = t.opacity;
for(let s = 0, e = this.dp.length; s < e; s++) {
t.setOpacity(this.dp[s][2]);
t.jump(this.dp[s][0]);
t.goto(this.dp[s][1]);
}
/*
for(let s=0,e=this.dp.length;s<e;s+=2) {
t.setOpacity(this.dpOpacity[s] == undefined || this.dpOpacity[s] == null? 1: this.dpOpacity[s]);
t.jump(this.dp[s]);
t.goto(this.dp[s+1]);
}
*/
t.setOpacity(op);
}
addHatching(t, s) {
if(typeof t == 'object') return t.hatch(n, this);
const e=new n;
e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);
const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t);
for(let t=.5;t<150/s;t++) {
e.dp.push([[h*t+i,o*t-a],[h*t-i,o*t+a], this.#opacity]);
e.dp.push([[-h*t+i,-o*t-a],[-h*t-i,-o*t+a], this.#opacity]);
}
e.boolean(this,!1);
this.dp=[...this.dp,...e.dp]
}
inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s}
boolean(t,s=!0){
const e=[];
for(let dpIdx=0,h=this.dp.length;dpIdx<h;dpIdx++){
const h=this.dp[dpIdx][0],o=this.dp[dpIdx][1],a=[];
for(let s=0,e=t.cp.length;s<e;s++){
const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]);
!1!==n&&a.push(n)
}
if(0===a.length)
s===!t.inside(h)&&e.push([h,o,this.dp[dpIdx][2]]);
else {
a.push(h,o);
const n=o[0]-h[0],i=o[1]-h[1];
a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i);
for(let n=0;n<a.length-1;n++)
(a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001 &&
s===!t.inside([(a[n][0]+a[n+1][0])/2,
(a[n][1]+a[n+1][1])/2]) &&
e.push([a[n],a[n+1],this.dp[dpIdx][2]])
}
}
return(this.dp=e).length>0
}
segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]}
};
return{
list:()=>t,
create:()=>new n,
draw:(n,h,o=!0)=>{
reducedPolygonList=function(n){
const h={},o=200/s;
for(var a=0;a<s;a++){
const c=a*o-100,r=[0,c,200,c+o];
if(!(n[3]<r[1]||n[1]>r[3]))
for(var i=0;i<s;i++){
const c=i*o-100;
r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{
const e=t[s];
n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||(h[s]=1)
})
}
}
return Array.from(Object.keys(h),s=>t[s])
}(h.aabb);
for(let t=0;t<reducedPolygonList.length&&h.boolean(reducedPolygonList[t]);t++);
h.draw(n),o&&function(n){
t.push(n);
const h=t.length-1,o=200/s;
e.forEach((t,e)=>{
const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o];
c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h)
})
}(h)
}
}
}
// Below is automatically maintained by Turtlelib 1.0
// Changes below this comment might interfere with its correct functioning.
function turtlelib_init() {
turtlelib_ns_c6665b0e9b_Jurgen_Vector_Math();
turtlelib_ns_13b81fd40e_Jurgen_Randomness();
turtlelib_ns_f1d1cac336_Jurgen_Numbers();
turtlelib_ns_c5f8fa95ed_Jurgen_Intersection();
}
// Turtlelib Jurgen Vector Math v 4 - start - {"id":"c6665b0e9b","package":"Jurgen","name":"Vector Math","version":"4"}
function turtlelib_ns_c6665b0e9b_Jurgen_Vector_Math() {
/////////////////////////////////////////////////////////
// Vector functions - Created by Jurgen Westerhof 2024 //
/////////////////////////////////////////////////////////
class Vector {
static add (a,b) { return a.map((v,i)=>v+b[i]); }
static sub (a,b) { return a.map((v,i)=>v-b[i]); }
static mul (a,b) { return a.map((v,i)=>v*b[i]); }
static div (a,b) { return a.map((v,i)=>v/b[i]); }
static scale(a,s) { return a.map(v=>v*s); }
static det(m) { return m.length == 1? m[0][0]: m.length == 2 ? m[0][0]*m[1][1]-m[0][1]*m[1][0]: m[0].reduce((r,e,i) => r+(-1)**(i+2)*e*this.det(m.slice(1).map(c => c.filter((_,j) => i != j))),0); }
static angle(a) { return Math.PI - Math.atan2(a[1], -a[0]); } //compatible with turtletoy heading
static rot2d(angle) { return [[Math.cos(angle), -Math.sin(angle)], [Math.sin(angle), Math.cos(angle)]]; }
static rot3d(yaw,pitch,roll) { return [[Math.cos(yaw)*Math.cos(pitch), Math.cos(yaw)*Math.sin(pitch)*Math.sin(roll)-Math.sin(yaw)*Math.cos(roll), Math.cos(yaw)*Math.sin(pitch)*Math.cos(roll)+Math.sin(yaw)*Math.sin(roll)],[Math.sin(yaw)*Math.cos(pitch), Math.sin(yaw)*Math.sin(pitch)*Math.sin(roll)+Math.cos(yaw)*Math.cos(roll), Math.sin(yaw)*Math.sin(pitch)*Math.cos(roll)-Math.cos(yaw)*Math.sin(roll)],[-Math.sin(pitch), Math.cos(pitch)*Math.sin(roll), Math.cos(pitch)*Math.cos(roll)]]; }
static trans(matrix,a) { return a.map((v,i) => a.reduce((acc, cur, ci) => acc + cur * matrix[ci][i], 0)); }
//Mirror vector a in a ray through [0,0] with direction mirror
static mirror2d(a,mirror) { return [Math.atan2(...mirror)].map(angle => this.trans(this.rot2d(angle), this.mul([-1,1], this.trans(this.rot2d(-angle), a)))).pop(); }
static equals(a,b) { return !a.some((e, i) => e != b[i]); }
static approx(a,b,p) { return this.len(this.sub(a,b)) < (p === undefined? .001: p); }
static norm (a) { return this.scale(a,1/this.len(a)); }
static len (a) { return Math.hypot(...a); }
static lenSq (a) { return a.reduce((a,c)=>a+c**2,0); }
static lerp (a,b,t) { return a.map((v, i) => v*(1-t) + b[i]*t); }
static dist (a,b) { return Math.hypot(...this.sub(a,b)); }
static dot (a,b) { return a.reduce((a,c,i) => a+c*b[i], 0); }
static cross(...ab) { return ab[0].map((e, i) => ab.map(v => v.filter((ee, ii) => ii != i))).map((m,i) => (i%2==0?-1:1)*this.det(m)); }
static clamp(a,min,max) { return a.map((e,i) => Math.min(Math.max(e, min[i]), max[i])) };
static rotateClamp(a,min,max) { return a.map((e,i) => {const d = max[i]-min[i];if(d == 0) return min[i];while(e < min[i]) { e+=d; }while(e > max[i]) { e-=d; }return e;});
}
}
this.V = Vector;
}
// Turtlelib Jurgen Vector Math v 4 - end
// Turtlelib Jurgen Randomness v 2 - start - {"id":"13b81fd40e","package":"Jurgen","name":"Randomness","version":"2"}
function turtlelib_ns_13b81fd40e_Jurgen_Randomness() {
///////////////////////////////////////////////////////////////
// Pseudorandom functions - Created by Jurgen Westerhof 2024 //
///////////////////////////////////////////////////////////////
class Random {
static #apply(seed) {
// Seedable random number generator by David Bau: http://davidbau.com/archives/2010/01/30/random_seeds_coded_hints_and_quintillions.html
!function(a,b,c,d,e,f,g,h,i){function j(a){var b,c=a.length,e=this,f=0,g=e.i=e.j=0,h=e.S=[];for(c||(a=[c++]);d>f;)h[f]=f++;for(f=0;d>f;f++)h[f]=h[g=s&g+a[f%c]+(b=h[f])],h[g]=b;(e.g=function(a){for(var b,c=0,f=e.i,g=e.j,h=e.S;a--;)b=h[f=s&f+1],c=c*d+h[s&(h[f]=h[g=s&g+b])+(h[g]=b)];return e.i=f,e.j=g,c})(d)}function k(a,b){var c,d=[],e=typeof a;if(b&&"object"==e)for(c in a)try{d.push(k(a[c],b-1))}catch(f){}return d.length?d:"string"==e?a:a+"\0"}function l(a,b){for(var c,d=a+"",e=0;e<d.length;)b[s&e]=s&(c^=19*b[s&e])+d.charCodeAt(e++);return n(b)}function m(c){try{return o?n(o.randomBytes(d)):(a.crypto.getRandomValues(c=new Uint8Array(d)),n(c))}catch(e){return[+new Date,a,(c=a.navigator)&&c.plugins,a.screen,n(b)]}}function n(a){return String.fromCharCode.apply(0,a)}var o,p=c.pow(d,e),q=c.pow(2,f),r=2*q,s=d-1,t=c["seed"+i]=function(a,f,g){var h=[];f=1==f?{entropy:!0}:f||{};var o=l(k(f.entropy?[a,n(b)]:null==a?m():a,3),h),s=new j(h);return l(n(s.S),b),(f.pass||g||function(a,b,d){return d?(c[i]=a,b):a})(function(){for(var a=s.g(e),b=p,c=0;q>a;)a=(a+c)*d,b*=d,c=s.g(1);for(;a>=r;)a/=2,b/=2,c>>>=1;return(a+c)/b},o,"global"in f?f.global:this==c)};if(l(c[i](),b),g&&g.exports){g.exports=t;try{o=require("crypto")}catch(u){}}else h&&h.amd&&h(function(){return t})}(this,[],Math,256,6,52,"object"==typeof module&&module,"function"==typeof define&&define,"random");
Math.seedrandom(seed);
}
static seedRandom() { this.#apply(new Date().getMilliseconds()); }
static seedDaily() { this.#apply(new Date().toDateString()); }
static seed(seed) { this.#apply(seed); }
static getInt(min, max) { if(max == undefined) {max = min + 1; min = 0; } const [mi, ma] = [Math.min(min, max), Math.max(min, max)]; return (mi + Math.random() * (ma - mi)) | 0;}
static get(min, max) {if(min == undefined) {return Math.random();}if(max == undefined) {max = min;min = 0;}const [mi, ma] = [Math.min(min, max), Math.max(min, max)];return mi + Math.random() * (ma - mi);}
static fraction(whole) { return this.get(0, whole); }
static getAngle(l = 1) { return l * this.get(0, 2*Math.PI); }
// Standard Normal variate using Box-Muller transform.
static getGaussian(mean=.5, stdev=.1) {const u = 1 - this.get(); /* Converting [0,1) to (0,1] */const v = this.get();const z = ( -2.0 * Math.log( u ) )**.5 * Math.cos( 2.0 * Math.PI * v );/* Transform to the desired mean and standard deviation: */return z * stdev + mean;}
static skew(value, skew = 0) { /*skew values (from 0 to 1) by a skew from -1 to 1, respectively right and left skewed (resp more values to left or to right), 0 is not skewed*/return (skew < 0)? value - (this.skew(1-value, -skew) - (1-value)): Math.pow(value, 1-Math.abs(skew));}
static getNormalDistributed(skew = 0) { /*skew values (from 0 to 1) by a skew from -1 to 1, respectively right and left skewed (resp more values to left or to right), 0 is not skewed*/let v = -1;while(v < 0 || 1 <= v) { v = this.getGaussian(.5, .1) };return this.skew(v, skew);}
}
this.R = Random;
}
// Turtlelib Jurgen Randomness v 2 - end
// Turtlelib Jurgen Numbers v 2 - start - {"id":"f1d1cac336","package":"Jurgen","name":"Numbers","version":"2"}
function turtlelib_ns_f1d1cac336_Jurgen_Numbers() {
/////////////////////////////////////////////////////////
// Number functions - Created by Jurgen Westerhof 2024 //
/////////////////////////////////////////////////////////
class Numbers {
static approx(a,b,p) { return Math.abs(a-b) < (p === undefined? .001: p); }
static clamp(a, min, max) { return Math.min(Math.max(a, min), max); }
static rotateClamp(a, min, max) { if(min == max) return min;while (a < min) { a+=(max-min); }while (a > max) { a-=(max-min); }return a;}
static lerp(a, b, t) { return V.lerp([a], [b], t).pop(); };
}
this.N = Numbers;
}
// Turtlelib Jurgen Numbers v 2 - end
// Turtlelib Jurgen Intersection v 4 - start - {"id":"c5f8fa95ed","package":"Jurgen","name":"Intersection","version":"4"}
function turtlelib_ns_c5f8fa95ed_Jurgen_Intersection() {
///////////////////////////////////////////////////////////////
// Intersection functions - Created by Jurgen Westerhof 2024 //
///////////////////////////////////////////////////////////////
class Intersection {
//a-start, a-direction, b-start, b-direction
//returns false on no intersection or [[intersection:x,y], scalar a-direction, scalar b-direction
static info(as, ad, bs, bd) { const d = V.sub(bs, as), det = -V.det([bd, ad]); if(det === 0) return false; const res = [V.det([d, bd]) / det, V.det([d, ad]) / det]; return [V.add(as, V.scale(ad, res[0])), ...res]; }
static ray(a, b, c, d) { return this.info(a, b, c, d); }
static segment(a,b,c,d, inclusiveStart = true, inclusiveEnd = true) { const i = this.info(a, V.sub(b, a), c, V.sub(d, c)); return i === false? false: ( (inclusiveStart? 0<=i[1] && 0<=i[2]: 0<i[1] && 0<i[2]) && (inclusiveEnd? i[1]<=1 && i[2]<=1: i[1]<1 && i[2]<1) )?i[0]:false;}
static tour(tour, segmentStart, segmentDirection) { return tour.map((e, i, a) => [i, this.info(e, V.sub(a[(i+1)%a.length], e), segmentStart, segmentDirection)]).filter(e => e[1] !== false && 0 <= e[1][1] && e[1][1] <= 1).filter(e => 0 <= e[1][2]).map(e => ({position: e[1][0],tourIndex: e[0],tourSegmentPortion: e[1][1],segmentPortion: e[1][2],}));}
static inside(tour, pt) { return tour.map((e,i,a) => this.segment(e, a[(i+1)%a.length], pt, [Number.MAX_SAFE_INTEGER, 0], true, false)).filter(e => e !== false).length % 2 == 1; }
static circles(centerA, radiusA, centerB, radiusB) {const result = {intersect_count: 0,intersect_occurs: true,one_is_in_other: false,are_equal: false,point_1: [null, null],point_2: [null, null],};const dx = centerB[0] - centerA[0];const dy = centerB[1] - centerA[1];const dist = Math.hypot(dy, dx);if (dist > radiusA + radiusB) {result.intersect_occurs = false;}if (dist < Math.abs(radiusA - radiusB) && !N.approx(dist, Math.abs(radiusA - radiusB))) {result.intersect_occurs = false;result.one_is_in_other = true;}if (V.approx(centerA, centerB) && radiusA === radiusB) {result.are_equal = true;}if (result.intersect_occurs) {const centroid = (radiusA**2 - radiusB**2 + dist * dist) / (2.0 * dist);const x2 = centerA[0] + (dx * centroid) / dist;const y2 = centerA[1] + (dy * centroid) / dist;const prec = 10000;const h = (Math.round(radiusA**2 * prec)/prec - Math.round(centroid**2 * prec)/prec)**.5;const rx = -dy * (h / dist);const ry = dx * (h / dist);result.point_1 = [x2 + rx, y2 + ry];result.point_2 = [x2 - rx, y2 - ry];if (result.are_equal) {result.intersect_count = Infinity;} else if (V.equals(result.point_1, result.point_2)) {result.intersect_count = 1;} else {result.intersect_count = 2;}}return result;}
}
this.Intersection = Intersection;
}
// Turtlelib Jurgen Intersection v 4 - end