Dragon's are made of chasing helixes
Log in to post a comment.
// You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(1); // Global code will be evaluated once. const turtle = new Turtle(); const x1 = -50 // min = -50 max = 50 step = 0.1 const x2 = 50 // min = -50 max = 50 step = 0.1 const r1 = 32 // min = 1 max = 50 step = 0.1 const r2 = 3 // min = 1 max = 50 step = 0.1 //const r3 = 50 // min = 1 max = 50 step = 0.1 const f1 = 1 // min = .1 max = 3 step = 0.01 const f2 = 1 // min = .1 max = 5 step = 0.01 //const f3 = 1 // min = .1 max = 10 step = 0.1 // steps const s1 = 30 // min = 1 max = 500 step = 1 const s2 = 140 // min = 1 max = 500 step = 1 //const s3 = 75 // min = 1 max = 500 step = 1 const g1 = .1 // min = -.1 max = .1 step = .001 const g2 = .1 // min = -.1 max = .1 step = .001 //const g3 = .1 // min = -2 max = 2 step = .01 const steps = 1000 // min = 1 max = 2000 step = 1 turtle.penup(); class CircleDrawer { constructor(cx, cy, f, r, g, theta, steps) { this.cx = cx; this.cy = cy; this.f = f; this.r = r; this.g = g; // grow this.theta = theta; //radians this.steps = steps; } getCurrentX() { return this.cx + Math.cos(this.theta * this.f) * this.r; } getCurrentY() { return this.cy + Math.sin(this.theta * this.f) * this.r; } step() { this.theta += Math.PI * 2 / this.steps; this.r += this.g } } let cd1 = new CircleDrawer(x1, 0, f1, r1, g1, 1, s1); let cd2 = new CircleDrawer(x2, 0, f2, r2, g2, 0, s2); //let cd3 = new CircleDrawer(0, 0, r3, g3, 0, s3); for(let i = 0; i < steps; i++) { let t = i/(steps-1); let ti = 1.0 - t; let x = ti * cd1.getCurrentX() + t * cd2.getCurrentX(); let y = ti * cd1.getCurrentY() + t * cd2.getCurrentY(); turtle.goto(x,y); //turtle.goto(cd1.getCurrentX(), cd1.getCurrentY()); //turtle.goto(cd2.getCurrentX(), cd2.getCurrentY()); //turtle.goto(cd.getCurrentX() + cd2.getCurrentX() + cd3.getCurrentX(), cd.getCurrentY() + cd2.getCurrentX() + cd3.getCurrentX()); if(i == 0) { turtle.pendown(); } cd1.step(); cd2.step(); //cd3.step(); }