Tweak the axiom and the rules to produce many kinds of L systems, or just play with the sliders to see what you get.
Log in to post a comment.
// L-system rules and initial state axiom = "F"; rules = {"F": "F+G++G-F--FF-G+", "G": "-F+GG++G+F--G"}; const iterations = 5; //min=1 max=6 step=1 const distance = 3; //min=1 max=5 step=1 const angle =60; //min=1 max=179 step=1 // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(1); // Global code will be evaluated once. const t = new Turtle(); // Function to generate the L-system string function generate_lsystem_string(axiom, rules, iterations) { current_string = axiom; for(i=0;i<iterations;++i ) { new_string = ""; for( j=0;j<current_string.length;++j) { symbol = current_string[j]; new_string += rules[symbol]; } current_string = new_string; } return current_string; } // Function to draw the L-system with turtle graphics function draw_lsystem(t, lsystem_string) { for( i=0;i<lsystem_string.length;++i ) { symbol = lsystem_string[i]; if( symbol == "F" ) t.forward(distance); else if( symbol == "G") t.forward(-distance); else if( symbol == "+") t.right(angle); else if( symbol == "-") t.left(angle); } } // Main drawing function function walk(i) { // Generate L-system string lsystem_string = generate_lsystem_string(axiom, rules, iterations); // Set up turtle t.pendown(); // Draw L-system draw_lsystem(t, lsystem_string); return false; }