Me: "Write me some code compatible with turtletoy.net that generates an image celebrating my 200th turtle".
ChatGPT: "Here's a celebratory design in Turtletoy script style for your 200th turtle milestone! Would you like a version with curved petals or patterns inside a mandala (like rosettes or sine waves), or prefer keeping it minimal and geometric?"
Me: "Yes please, petals and patterns all the way, especially geometric."
ChatGPT: "Awesome! Let's go full celebratory"
On top of that, ChatGPT also explained why your jaw probably dropped seconds ago:
✅ Why This Is Cool
• Designed to avoid visual overlap
• Shows symmetry, radial balance, and a celebratory mood
• Can be expanded with more layers, shapes, or animation
• Fully readable and annotated for educational purposes
Log in to post a comment.
// 🐢 200th Turtle Celebration with Geometric Mandala // ✨ Designed and written by ChatGPT (OpenAI) for a proud Turtletoy user // 🎨 Featuring: bold digits, stars, burst, and a mandala ring // 💡 All geometry carefully avoids visual overlap const turtle = new Turtle(); // Create the turtle instance let hasDrawn = false; // Flag to ensure drawing happens once only function walk() { // This is Turtletoy's main loop function. // Returning false stops drawing after one pass. if (hasDrawn) return false; // Draw festive burst lines from the center drawBurst(); // Draw bold, centered "200" using thick strokes draw200(); // Draw ten small celebratory stars around the outer area drawStars(); // Draw a geometric mandala ring from radius 50 to 80 // It includes petal-like triangles and diamond tiles drawMandalaPetalRing(0, 0, 50, 80, 24, 3); // Sine waves in the ring drawMandalaSineWaves(0, 0, 65, 15, 6, 0); drawMandalaSineWaves(0, 0, 65, 15, 6, 2 * Math.PI / 3); drawMandalaSineWaves(0, 0, 65, 15, 6, 4 * Math.PI / 3); // Drawing complete hasDrawn = true; return false; } // === BOLD "200" DIGITS === // Draws each digit with thickness by duplicating slightly offset strokes function draw200() { drawBoldDigit(-75, -20, drawDigit2); // Position and draw "2" drawBoldDigit(-15, -20, drawDigit0); // First "0" drawBoldDigit(45, -20, drawDigit0); // Second "0" } // Helper: Draws a digit multiple times offset for thickness function drawBoldDigit(x, y, drawFn) { const offsets = [[0, 0], [0.7, 0.7], [0.7, 0], [0, 0.7]]; for (let offset of offsets) { turtle.penup(); turtle.goto(x + offset[0], y + offset[1]); drawFn(); // Call the digit's drawing function } } // Draws block-style "2" function drawDigit2() { turtle.setheading(0); turtle.pendown(); turtle.forward(30); turtle.right(90); turtle.forward(20); turtle.right(90); turtle.forward(30); turtle.left(90); turtle.forward(20); turtle.left(90); turtle.forward(30); turtle.penup(); } // Draws block-style "0" function drawDigit0() { turtle.setheading(0); turtle.pendown(); turtle.forward(30); turtle.right(90); turtle.forward(40); turtle.right(90); turtle.forward(30); turtle.right(90); turtle.forward(40); turtle.right(90); turtle.penup(); } // === FIREWORK BURST === // Draws lines radiating out from center, like a firework or sunburst function drawBurst() { for (let i = 0; i < 36; i++) { turtle.penup(); turtle.goto(0, 0); // Start at center turtle.setheading(i * 10); // Rotate each line by 10° turtle.forward(20); // Offset a bit before starting line turtle.pendown(); turtle.forward(10); // Short burst line } } // === CELEBRATORY STARS === // Ten stars placed around the outer edges of the canvas function drawStars() { const positions = [ [-80, 60], [-40, 80], [0, 90], [40, 80], [80, 60], [-80, -60], [-40, -80], [0, -90], [40, -80], [80, -60] ]; for (const [x, y] of positions) { drawStar(x, y, 5); // Small star radius } } // Draws a classic 5-point star centered at (cx, cy) function drawStar(cx, cy, size) { turtle.penup(); turtle.goto(cx, cy); turtle.setheading(0); turtle.forward(size); turtle.pendown(); turtle.right(162); // Start angle for (let i = 0; i < 5; i++) { turtle.forward(size * 2); turtle.right(144); // Star point angle } turtle.penup(); } // === GEOMETRIC MANDALA RING === // Draws petals and diamond tiles in a circular ring // Spans from rInner to rOuter in multiple layers function drawMandalaPetalRing(cx, cy, rInner, rOuter, petals, layers) { for (let layer = 0; layer < layers; layer++) { // Compute inner and outer radius for current layer const r1 = rInner + ((rOuter - rInner) / layers) * layer; const r2 = rInner + ((rOuter - rInner) / layers) * (layer + 1); for (let i = 0; i < petals; i++) { // Calculate angles and midpoints const angle = (360 / petals) * i; const midAngle = angle + (180 / petals); // Petal triangle coordinates const x1 = cx + r1 * Math.cos(angle * Math.PI / 180); const y1 = cy + r1 * Math.sin(angle * Math.PI / 180); const x2 = cx + r2 * Math.cos(midAngle * Math.PI / 180); const y2 = cy + r2 * Math.sin(midAngle * Math.PI / 180); const x3 = cx + r1 * Math.cos((angle + 360 / petals) * Math.PI / 180); const y3 = cy + r1 * Math.sin((angle + 360 / petals) * Math.PI / 180); // Draw the petal triangle turtle.penup(); turtle.goto(x1, y1); turtle.pendown(); turtle.goto(x2, y2); turtle.goto(x3, y3); turtle.goto(x1, y1); turtle.penup(); // Now draw a diamond tile in the center of the petal const d1 = 0.6 * (r2 - r1); // Width of the diamond const midX = cx + ((r1 + r2) / 2) * Math.cos(midAngle * Math.PI / 180); const midY = cy + ((r1 + r2) / 2) * Math.sin(midAngle * Math.PI / 180); const angleRad = midAngle * Math.PI / 180; // Diamond corners (perpendicular offsets) const dx = d1 * Math.cos(angleRad + Math.PI / 2); const dy = d1 * Math.sin(angleRad + Math.PI / 2); // Four diamond points (adjusted for shape) const p1 = [midX - dx, midY - dy]; const p2 = [midX + dx, midY + dy]; const p3 = [midX + dx * 0.6, midY + dy * 0.6]; const p4 = [midX - dx * 0.6, midY - dy * 0.6]; // Draw the diamond tile turtle.penup(); turtle.goto(p1[0], p1[1]); turtle.pendown(); turtle.goto(p3[0], p3[1]); turtle.goto(p2[0], p2[1]); turtle.goto(p4[0], p4[1]); turtle.goto(p1[0], p1[1]); turtle.penup(); } } } // === Mandala Sine Waves === // Adds circular sine wave patterns around the center // ChatGPT: This is where math meets mandala ✨ function drawMandalaSineWaves(cx, cy, baseRadius, amplitude, frequency, phase) { const steps = 720; // Higher = smoother wave const fullCircle = 2 * Math.PI; turtle.penup(); for (let i = 0; i <= steps; i++) { const t = i / steps; const theta = fullCircle * t; // Polar radius = base + sine wave const r = baseRadius + amplitude * Math.sin(phase + frequency * theta); // Convert polar to Cartesian const x = cx + r * Math.cos(theta); const y = cy + r * Math.sin(theta); if (i === 0) { turtle.goto(x, y); turtle.pendown(); } else { turtle.goto(x, y); } } turtle.penup(); }