A combination of Floyd-Steinberg Dithering and raytracing with reflection, refraction, and fresnel lensing. There is no supersampling to get the light that bends through the glass and hits the floor.
#raytracer #raytrace #dither #gradient #pixel
Log in to post a comment.
// Forked from "FSD Raytraced Sphere #1" by imakerobots
// https://turtletoy.net/turtle/8f85afd31a
// Forked from "Floyd–Steinberg dithering" by imakerobots
// raytraced sphere part from https://turtletoy.net/turtle/11075dfee0
const canvas_size = 95;
const brown_rot = 360;
const brown_for_min = 1;
const brown_for_max = 10;
const light_position = [-2,3,-4];
const sphere_pos = [0,1,0];
function cast_ray(origin,rd,depth) {
depth--;
if(depth<=0) return 0;
light = 0;
plane_hit = false;
dist = intersect_sphere(origin, rd, sphere_pos, 1);
if (dist > 0) {
hit = vec_add(origin, vec_mul(rd, dist));
normal = vec_normalize(vec_sub(hit,sphere_pos));
} else {
dist = 10000;
}
if (rd[1] < 0) {
const plane_dist = origin[1]/-rd[1];
if (plane_dist>0 && plane_dist < dist)
{
dist = plane_dist;
plane_hit = true;
hit = vec_add(origin, vec_mul(rd, dist));
normal = [0,1,0];
}
}
if (dist > 0.00001 && dist < 100) {
let vec_to_light = vec_sub(hit, light_position);
const light_dist_sqr = vec_dot(vec_to_light, vec_to_light);
vec_to_light = vec_mul(vec_to_light, -1/Math.sqrt(light_dist_sqr));
let light = vec_dot(normal, vec_to_light);
light *= 20 / light_dist_sqr; // changed the intensity a bit
// shadow ?
if (plane_hit) {
if(intersect_sphere(hit, vec_to_light, sphere_pos, 1) > 0) {
light = 0.01; // added some ambient light. make 0 for none.
}
xodd = (hit[0]-Math.floor(hit[0]))>0.5;
zodd = (hit[2]-Math.floor(hit[2]))>0.5;
if( xodd==zodd) {
light/=25;
}
} else {
var cosi=Math.max(-1,Math.min(1,vec_dot(normal,rd)));
// fresnel effect
kr = 1;
// materials (for index of refraction)
var etai = 1;
var etat = 1.3;
outside=true;
if (cosi < 0) {
cosi = -cosi;
} else {
outside=false;
et = etai;
etai=etat;
etat=et;
}
// reflected ray
reflected_ray=vec_normalize(vec_add(rd,vec_mul(normal,cosi*2)));
reflected=cast_ray(hit,reflected_ray,depth);
// get refracted ray
refracted=0;
// Compute sini using Snell's law
sint = etai / etat * Math.sqrt(Math.max(0, 1.0 - cosi * cosi));
if (sint <1) {
// not Total internal reflection
cost = Math.sqrt(Math.max(0, 1 - sint * sint));
Rs = ((etat * cosi) - (etai * cost)) / ((etat * cosi) + (etai * cost));
Rp = ((etai * cosi) - (etat * cost)) / ((etai * cosi) + (etat * cost));
kr = (Rs * Rs + Rp * Rp) / 2;
}
if(kr<1) {
eta = etai / etat;
k = 1 - eta * eta * (1 - cosi * cosi);
if( k >= 0 ) {
refracted_ray=vec_normalize(
vec_add(
vec_mul(rd, eta),
vec_mul(normal, eta * cosi - Math.sqrt(k) )
)
);
refracted=cast_ray(hit,refracted_ray,depth);
}
}
//kr=0;
//light= 0;
light=Math.max(0,light);
light=Math.pow(light,26)*0.0008; // a little phong style intensity on the spot
light+= reflected*kr;
light+= refracted*(1-kr);
}
return Math.sqrt(Math.min(1, Math.max(0,light)));
} else {
return 0;
}
}
function get_image_intensity(x,y) {
x /= canvas_size;
y /= canvas_size;
const camera = [0.4,1,-3.];
const rd = vec_normalize([x,-y,2]);
return cast_ray(camera,rd,5);
}
// math functions
function vec_normalize(a) {
const l = Math.sqrt(vec_dot(a,a));
return [a[0]/l,a[1]/l,a[2]/l];
}
function vec_add(a, b) {
return [a[0]+b[0], a[1]+b[1], a[2]+b[2]]
}
function vec_mul(a, b) {
return [a[0]*b, a[1]*b, a[2]*b]
}
function vec_sub(a, b) {
return [a[0]-b[0], a[1]-b[1], a[2]-b[2]]
}
function vec_dot(a, b) {
return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];
}
//https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-intersection
function intersect_sphere(ro, rd, center, radius) {
const L = vec_sub(center, ro);
const tca = vec_dot( L, rd );
const d2 = vec_dot( L, L ) - tca*tca;
radius2=radius*radius;
if(d2>radius2) return -1;
thc = Math.sqrt(radius2 - d2);
t0 = tca - thc;
t1 = tca + thc;
if(t1<t0) {
t2=t1;
t1=t0;
t0=t2;
}
if(t0<0) {
t0=t1;
if(t0<0) {
return -1;
}
}
return t0;
}
// dithering part from https://turtletoy.net/turtle/d47e2bad0c
Canvas.setpenopacity(1);
// Global code will be evaluated once.
const turtle = new Turtle();
const level_of_detail=2; // min=1.5, max=20, step=0.5
turtle.penup();
turtle.goto(-100,-100);
const stepSize = level_of_detail/10.0;
const stepsPerLine = Math.floor(200.0/stepSize);
stepsRemaining=stepsPerLine*stepsPerLine;
dx=1;
error1 = new Array(stepsPerLine);
error2 = new Array(stepsPerLine);
for(i=0;i<error1.length;++i) {
error1[i] = error2[i] = 0;
}
function newLine() {
for(var i=0;i<stepsPerLine;++i) {
error1[i] = error2[i];
error2[i] = 0;
}
}
function get_pixel(x,y) {
return get_image_intensity( x,y );
}
function find_closest_palette_color(oldpixel) {
return oldpixel>0.5?1.0:0.0;
}
function walk(i) {
var x=turtle.x()/stepSize+stepsPerLine/2;
var y=turtle.y()/stepSize+stepsPerLine/2;
if(x<0) x=0;
if(x>=stepsPerLine) x=stepsPerLine-1;
x=Math.floor(x);
var oldpixel = error1[x] + get_pixel(turtle.x(),turtle.y());
var newpixel = find_closest_palette_color(oldpixel);
var quant_error = oldpixel - newpixel;
var xP1 = x+dx;
var xM1 = x-dx;
if(xP1>=0 && xP1<stepsPerLine) error1[xP1] += quant_error * 7.0/16.0;
if(xM1>=0 && xM1<stepsPerLine) error2[xM1] += quant_error * 3.0/16.0;
error2[x ] += quant_error * 5.0/16.0;
if(xP1>=0 && xP1<stepsPerLine) error2[xP1] += quant_error * 1.0/16.0;
if(newpixel>0.5) {
turtle.penup();
} else {
turtle.pendown();
}
turtle.forward(stepSize);
if(turtle.x()>=100) {
turtle.right(90);
turtle.forward(stepSize);
turtle.right(90);
dx=-dx;
newLine();
} else if(turtle.x()<=-100) {
turtle.left(90);
turtle.forward(stepSize);
turtle.left(90);
dx=-dx;
newLine();
}
return turtle.y()<100 && turtle.y()>=-100;//stepsRemaining-- > 0;
}