An implementation to draw tilings, including aperiodic ones like the Penrose tiling using kites and darts: en.wikipedia.org/wik…_and_dart_tiling_(p2)
I guess it's a slow and maybe naive implementation. However, I tried to keep optimisations that are specifically for kites and darts out of it. When other shapes are defined, the code should still work.
youtube.com/watch?v=48scx-wbs34&t=838s
Log in to post a comment.
const allowGaps = 0;//min=0 max=1 step=1 (No, Yes) const size = 20;//min=2 max=30 step=.5 const padding = 30;//min=-20 max=50 step=5 const hatching = 1;//min=0 max=1 step=1 (No, Yes) const plotPenThickness = .15 //min=.01 max=2 step=.01 // Define the turtle const turtle = new Turtle(); const polygons = new Polygons(); // Define the size of the tiles const GOLDEN_RATIO = (1 + 5**.5) / 2; // Set the pen opacity of the canvas Canvas.setpenopacity(1); const KITE_LONG_LEFT = 0; const KITE_LONG_RIGHT = 1; const KITE_SHORT_LEFT = 2; const KITE_SHORT_RIGHT = 3; const ARROW_LONG_LEFT = 4; const ARROW_LONG_RIGHT = 5; const ARROW_SHORT_LEFT = 6; const ARROW_SHORT_RIGHT = 7; const EDGEMAP = [ [KITE_LONG_RIGHT, ARROW_LONG_LEFT], [KITE_LONG_LEFT, ARROW_LONG_RIGHT], [KITE_SHORT_RIGHT, ARROW_SHORT_LEFT], [KITE_SHORT_LEFT, ARROW_SHORT_RIGHT], [ARROW_LONG_RIGHT, KITE_LONG_LEFT], [ARROW_LONG_LEFT, KITE_LONG_RIGHT], [KITE_SHORT_LEFT], [KITE_SHORT_RIGHT] ]; const TYPEPOLYGONS = {'kite': [.9, 6 * plotPenThickness], 'arrow': [1.1, 4 * plotPenThickness]}; const TILECANDIDATES = Array.from({length: EDGEMAP.length}).map((v, i) => i < 6? ['arrow', 'kite']: ['kite']); const container = 100 - padding; const tileBlueprints = getTiles(size); const edgesToProcess = []; const edgesAll = []; const polygonsAll = []; const checkpoints = []; let revert = false; const startRotation = (Math.random()-.5)*2*Math.PI; const startType = Object.keys(TYPEPOLYGONS).sort((a,b) => Math.random() -.5).pop(); let [tile, rott] = getTileEdges(tileBlueprints[startType], (Math.random() * 4) | 0, [Math.random() * size,Math.random() * size], startRotation); addTile(turtle, tile, [startType, startRotation-rott]); function walk(run) { if(edgesToProcess.length == 0) { if(hatching === 1) { [polygonsAll.shift()].forEach(pts => { const p = polygons.create(); p.addPoints(...pts[1]); p.addHatching(pts[0][1] - Math.PI*TYPEPOLYGONS[pts[0][0]][0], TYPEPOLYGONS[pts[0][0]][1]); polygons.draw(turtle, p); }); } if(hatching === 0 || polygonsAll.length == 0) { edgesAll.forEach(edge => drawPath(turtle, [edge[0], edge[1]])); } return polygonsAll.length > 0 && hatching === 1; } let tries = null; if(allowGaps == 0 && revert) { const cp = checkpoints.pop(); tries = cp[0]; edgesToProcess.splice(0, edgesToProcess.length, ...cp[1]); edgesAll.splice(0, edgesAll.length, ...cp[2]); polygonsAll.splice(0, polygonsAll.length, ...cp[3]); revert = false; } let processEdge = edgesToProcess.shift(); if(!edgeContained([-container, -container], [container, container], processEdge)) { return true; } if(tries === null) { tries = TILECANDIDATES[processEdge[2]].map(a=>a).sort((a,b) => Math.random() < .5? 1: -1); } let placedSomething = false; for(let tryIndex = 0; tryIndex < tries.length; tryIndex++) { const _try = tries[tryIndex]; const linkedEdge = tileBlueprints[_try].map((v, i) => [i, v[2]]).filter(v => EDGEMAP[processEdge[2]].includes(v[1])).map(v => v[0]).pop(); if(linkedEdge == undefined) { continue; } const direction = sub2(processEdge[1], processEdge[0]); const rotation = Math.atan2(...direction); const [tile, rott] = getTileEdges(tileBlueprints[_try], linkedEdge, processEdge[1], rotation+Math.PI); const proximityLimits = tile.reduce((p, edge) => [ Math.min(p[0], edge[0][0] - size), Math.max(p[1], edge[0][0] + size), Math.min(p[0], edge[0][1] - size), Math.max(p[1], edge[0][1] + size), ], [2000, -2000, 2000, -2000]); const nearEdges = edgesAll.filter(edge => (( proximityLimits[0] <= edge[0][0] && edge[0][0] <= proximityLimits[1] && proximityLimits[2] <= edge[0][1] && edge[0][1] <= proximityLimits[3] ) || ( proximityLimits[0] <= edge[1][0] && edge[1][0] <= proximityLimits[1] && proximityLimits[2] <= edge[1][1] && edge[1][1] <= proximityLimits[3] )) && edge != processEdge ); let cancelBecauseOverlappingEdgesNotMatching = false; for(let i = 1; i < tile.length; i++) { //for all test edges which are all but the connecting first edge const myDir = Math.atan2(...sub2(tile[i][1], tile[i][0])); //get the direction //then for all near edges, filter the edges that end near the location the test edge starts const matchedEdges = nearEdges.filter(e => nearSq2(e[1], tile[i][0], .01)).filter(e => { //and only get the edges that have approximately the same direction return approx1(Math.atan2(...sub2(e[0], e[1])), myDir); }); //also for all near edges, filter the edges that start near the location the test edge ends const otherMatchedEdges = nearEdges.filter(e => nearSq2(e[0], tile[i][1], .01)).filter(e => { //and only get the edges that have approximately the same direction return approx1(Math.atan2(...sub2(e[0], e[1])), myDir); }) if(matchedEdges.length === 0 && otherMatchedEdges.length === 0) { // if none are found we can continue test the next one continue; } if(matchedEdges.length > 0) { if(!EDGEMAP[tile[i][2]].includes(matchedEdges[0][2])) { // otherwise, if the type of the matching edge does not match the test edge type cancelBecauseOverlappingEdgesNotMatching = true; // (ie a short overlaps a long) cancel this candidate break; //and stop testing } } else { if(!EDGEMAP[tile[i][2]].includes(otherMatchedEdges[0][2])) { // otherwise, if the type of the matching edge does not match the test edge type cancelBecauseOverlappingEdgesNotMatching = true; // (ie a short overlaps a long) cancel this candidate break; //and stop testing } } } const shouldCancelPlacementBecauseIntersectionsWithOtherEdges = tile.some((edge, i) => { if (i === 0) { return false; } return nearEdges.some(e => !nearSq2(e[0], edge[0], .01) && !nearSq2(e[0], edge[1], .01) && !nearSq2(e[1], edge[0], .01) && !nearSq2(e[1], edge[1], .01) && segment_intersect2(edge[0], edge[1], e[0], e[1]) !== false ); }); if(cancelBecauseOverlappingEdgesNotMatching || shouldCancelPlacementBecauseIntersectionsWithOtherEdges) { continue; } if(tryIndex < tries.length - 1) { //make checkpoint for later revert checkpoints.push([ tries.filter((v, i) => i > tryIndex), cloneEdges(edgesToProcess), cloneEdges(edgesAll), polygonsAll.map(pts => pts.map(pt => [...pt])) ]); checkpoints[checkpoints.length - 1][1].push(cloneEdge(processEdge)); //end make checkpoint } addTile(turtle, tile, [_try, rotation-rott]); placedSomething = true; break; } if(!placedSomething) { revert = true; } return true; } function cloneEdge(edge) { return [[...edge[0]], [...edge[1]], edge[2]]; } function cloneEdges(edges) { return edges.map(e => cloneEdge(e)); } function addTile(turtle, tile, typeRotation) { polygonsAll.push([typeRotation, tile.map(edge => edge[0])]); const add = cloneEdges(tile); if(edgesAll.length > 0) { add.shift(); for(let i = 0; i < edgesAll.length; i++) { for(let j = 0; j < add.length; j++) { if( //same start and same end (== same edge in same direction) will never happen //(nearSq2(edgesAll[i][0], add[j][0]) && nearSq2(edgesAll[i][1], add[j][1])) || (nearSq2(add[j][1], edgesAll[i][0]) && nearSq2(add[j][0], edgesAll[i][1])) ) { for(let k = 0; k < edgesToProcess.length; k++) { if( //same start and same end (== same edge in same direction) will never happen //(nearSq2(edgesAll[i][0], add[j][0]) && nearSq2(edgesAll[i][1], add[j][1])) || (nearSq2(add[j][1], edgesToProcess[k][0]) && nearSq2(add[j][0], edgesToProcess[k][1])) ) { edgesToProcess.splice(k, 1); break; } } add.splice(j, 1); break; } } } /*// THIS IS THE CODE TO SUBSTITUTE DE LOOP ABOVE (over edgesAll) WHEN REVERTING IS IMPLEMENTED for(let i = 0; i < edgesToProcess.length; i++) { for(let j = 0; j < add.length; j++) { if( //same start and same end (== same edge in same direction) will never happen //(nearSq2(edgesAll[i][0], add[j][0]) && nearSq2(edgesAll[i][1], add[j][1])) || (nearSq2(add[j][1], edgesToProcess[i][0]) && nearSq2(add[j][0], edgesToProcess[i][1])) ) { add.splice(j, 1); edgesToProcess.splice(i, 1); i--; //j--; break; } } } /// THIS IS THE CODE TO SUBSTITUTE DE LOOP ABOVE (over edgesAll) WHEN REVERTING IS IMPLEMENTED */ } add.forEach(edge => { edgesToProcess.push(edge); edgesAll.push(edge); }); } function edgeContained(leftTop, bottomRight, edge) { return (leftTop[0] <= edge[0][0] && edge[0][0] <= bottomRight[0] && leftTop[1] <= edge[0][1] && edge[0][1] <= bottomRight[1]) || (leftTop[0] <= edge[1][0] && edge[1][0] <= bottomRight[0] && leftTop[1] <= edge[1][1] && edge[1][1] <= bottomRight[1]); } function getTileEdges(tilePathDefinition, side, location, rotation) { const startRotation = tilePathDefinition.reduce((p, v, i) => p + (i < side? v[1]: 0), 0); return [ tilePathDefinition.map((v, i, a) => a[(i+side)%a.length]) .reduce((p, v, i, a) => { const cp = p.length == 0? location: p[p.length-1][1]; const result = [cp, add2(cp, trans2(rot2(rotation - Math.PI/2), v[0])), v[2]]; rotation += v[1]; return p.concat([result]); }, []), startRotation ]; } // Helper function to draw a kite tile function getTiles(size) { const short = [size/GOLDEN_RATIO, 0]; const long = [size, 0]; const pi2 = Math.PI * 2; return { kite: [ [short, 1.4*Math.PI, KITE_SHORT_LEFT], //-108 = 1.4*2*pi [long, 1.4*Math.PI, KITE_LONG_LEFT], //-108 = 1.4*2*pi [long, 1.4*Math.PI, KITE_LONG_RIGHT], //-108 = 1.4*2*pi [short, 1.8*Math.PI, KITE_SHORT_RIGHT], //-36 = 1.8*2*pi ], arrow: [ [short, 1.2*Math.PI, ARROW_SHORT_LEFT], //-144 = -0.4*2*pi [long, 1.4*Math.PI, ARROW_LONG_LEFT], //-108 = 1.4*2*pi [long, 1.2*Math.PI, ARROW_LONG_RIGHT], //-144 = -0.4*2*pi [short, 0.2*Math.PI, ARROW_SHORT_RIGHT], //-324 = -0.9*2*pi ] } } function approx1(a,b,delta=0.0001) { return -delta < a-b && a-b < delta } //////////////////////////////////////////////////////////////// // 2D Vector Math utility code - Created by several Turtletoy users //////////////////////////////////////////////////////////////// function norm2(a) { return scale2(a, 1/len2(a)); } function add2(a, b) { return [a[0]+b[0], a[1]+b[1]]; } function sub2(a, b) { return [a[0]-b[0], a[1]-b[1]]; } function mul2(a, b) { return [a[0]*b[0], a[1]*b[1]]; } function scale2(a, s) { return mul2(a, [s,s]); } function lerp2(a,b,t) { return [a[0]*(1-t) + b[0]*t, a[1]*(1-t) + b[1]*t]; } function lenSq2(a) { return a[0]**2+a[1]**2; } function len2(a) { return Math.sqrt(lenSq2(a)); } function rot2(a) { return [Math.cos(a), -Math.sin(a), Math.sin(a), Math.cos(a)]; } function trans2(m, a) { return [m[0]*a[0]+m[2]*a[1], m[1]*a[0]+m[3]*a[1]]; } //Matrix(2x1) x Matrix(2x2) function dist2(a,b) { return Math.hypot(...sub2(a,b)); } function dot2(a,b) { return a[0]*b[0]+a[1]*b[1]; } function cross2(a,b) { return a[0]*b[1] - a[1]*b[0]; } function multiply2(a2x2, a) { return [(a[0]*a2x2[0])+(a[1]*a2x2[1]),(a[0]*a2x2[2])+(a[1]*a2x2[3])]; } //Matrix(2x2) x Matrix(1x2) function intersect_info2(as, ad, bs, bd) { const d = [bs[0] - as[0], bs[1] - as[1]]; const det = bd[0] * ad[1] - bd[1] * ad[0]; if(det === 0) return false; const res = [(d[1] * bd[0] - d[0] * bd[1]) / det, (d[1] * ad[0] - d[0] * ad[1]) / det]; return [...res, add2(as, scale2(ad, res[0]))]; } function intersect_ray2(a, b, c, d) { const i = intersect_info2(a, b, c, d); return i === false? i: i[2]; } function segment_intersect2(a,b,c,d, inclusive = true) { const i = intersect_info2(a, sub2(b, a), c, sub2(d, c)); if(i === false) return false; const t = inclusive? 0<=i[0]&&i[0]<=1&&0<=i[1]&&i[1]<=1: 0<i[0]&&i[0]<1&&0<i[1]&&i[1]<1; return t?i[2]:false; } function approx2(a,b,delta=0.0001) { return len2(sub2(a,b)) < delta } function eq2(a,b) { return a[0]==b[0]&&a[1]==b[1]; } function clamp2(a, tl, br) { return [Math.max(Math.min(br[0], a[0]), tl[0]), Math.max(Math.min(br[1], a[1]), tl[1])]; } function nearSq2(test, near, delta = .0001) { return near[0] - delta < test[0] && test[0] < near[0] + delta && near[1] - delta < test[1] && test[1] < near[1] + delta; } //////////////////////////////////////////////////////////////// // Start of some path utility code - Created by Jurgen Westerhof 2023 //////////////////////////////////////////////////////////////// function circlePoints(radius, extend = 2 * Math.PI, clockWiseStart = 0, steps = null, includeLast = false) { return [steps == null? (radius*extend+1)|0: steps].map(steps => Array.from({length: steps}).map((v, i, a) => [radius * Math.cos(clockWiseStart + extend*i/(a.length-(includeLast?1:0))), radius * Math.sin(clockWiseStart + extend*i/(a.length-(includeLast?1:0)))])).pop(); } function pts2Edges(pts) { return pts.map((v, i, a) => [v, a[(i+1)%a.length]]); } function drawPath(turtle, pts) { return pts.forEach((pt, i) => turtle[i == 0? 'jump':'goto'](pt)); } function drawTour(turtle, pts) { return drawPath(turtle, pts.concat([pts[0]])); } function drawPoint(turtle, pt) { return drawTour(turtle, circlePoints(.5).map(p => add2(p, pt))); } function isInPolygon(edges, pt) { return edges.map(edge => intersect_info2(edge[0], sub2(edge[1], edge[0]), pt, [0, 300])).filter(ii => ii !== false && 0 <= ii[0] && ii[0] <= 1 && 0 < ii[1]).length % 2 == 1; } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // (Polygon binning by Lionel Lemarie 2021) // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons(){const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{constructor(){this.cp=[],this.dp=[],this.aabb=[]}addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]}addSegments(...t){t.forEach(t=>this.dp.push(t))}addOutline(){for(let t=0,s=this.cp.length;t<s;t++)this.dp.push(this.cp[t],this.cp[(t+1)%s])}draw(t){for(let s=0,e=this.dp.length;s<e;s+=2)t.jump(this.dp[s]),t.goto(this.dp[s+1])}addHatching(t,s){const e=new n;e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t);for(let t=.5;t<150/s;t++)e.dp.push([h*t+i,o*t-a],[h*t-i,o*t+a]),e.dp.push([-h*t+i,-o*t-a],[-h*t-i,-o*t+a]);e.boolean(this,!1),this.dp=[...this.dp,...e.dp]}inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s}boolean(t,s=!0){const e=[];for(let n=0,h=this.dp.length;n<h;n+=2){const h=this.dp[n],o=this.dp[n+1],a=[];for(let s=0,e=t.cp.length;s<e;s++){const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]);!1!==n&&a.push(n)}if(0===a.length)s===!t.inside(h)&&e.push(h,o);else{a.push(h,o);const n=o[0]-h[0],i=o[1]-h[1];a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i);for(let n=0;n<a.length-1;n++)(a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001&&s===!t.inside([(a[n][0]+a[n+1][0])/2,(a[n][1]+a[n+1][1])/2])&&e.push(a[n],a[n+1])}}return(this.dp=e).length>0}segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]}};return{list:()=>t,create:()=>new n,draw:(n,h,o=!0)=>{reducedPolygonList=function(n){const h={},o=200/s;for(var a=0;a<s;a++){const c=a*o-100,r=[0,c,200,c+o];if(!(n[3]<r[1]||n[1]>r[3]))for(var i=0;i<s;i++){const c=i*o-100;r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{const e=t[s];n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||(h[s]=1)})}}return Array.from(Object.keys(h),s=>t[s])}(h.aabb);for(let t=0;t<reducedPolygonList.length&&h.boolean(reducedPolygonList[t]);t++);h.draw(n),o&&function(n){t.push(n);const h=t.length-1,o=200/s;e.forEach((t,e)=>{const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o];c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h)})}(h)}}}