A quite famous torus.
I have combined code from @flockaroo (turtle torus) and the cleaned-up version of my own occlusion code by @ge1doot (cubes).
Log in to post a comment.
// Torus. Created by Reinder Nijhoff 2019
// @reindernijhoff
//
// https://turtletoy.net/turtle/90e6288a6b
//
// I have combined code from @flockaroo (https://turtletoy.net/turtle/2dc4806767)
// and the cleaned up version of my own occlusion code by @ge1doot
// (https://turtletoy.net/turtle/c2cf454d80).
//
const turtle = new Slowpoke();
const polygons = Polygons();
const faces = [];
const nth = 120;
const nph = 40;
const radius_0 = 70;
const radius_1 = 55;
const radius_2 = 55;
const proj_xy_scale = 80;
const camera_z = 65;
const near = 5;
class Face {
constructor (p0, p1, p2, p3, d) {
this.p0 = p0;
this.p1 = p1;
this.p2 = p2;
this.p3 = p3;
this.dark = d;
}
draw () {
const p = polygons.create();
p.addPoints(this.p0, this.p1, this.p3, this.p2);
p.addSegments(
this.p0, this.p1,
this.p2, this.p3
);
if (this.dark) {
p.addHatching(-Math.PI / 4, 1);
}
polygons.draw(turtle, p);
}
};
for (let i = 0; i < nth; i++) {
for (let j = 0; j < nph; j++) {
let p0 = getTorusPoint(i, j, radius_0, radius_1, radius_2, nph, nth);
let p1 = getTorusPoint(i + 1, j, radius_0, radius_1, radius_2, nph, nth);
let p2 = getTorusPoint(i, j + 1, radius_0, radius_1, radius_2, nph, nth);
let p3 = getTorusPoint(i + 1, j + 1, radius_0, radius_1, radius_2, nph, nth);
p0 = project(p0);
p1 = project(p1);
p2 = project(p2);
p3 = project(p3);
if (p0[2] > near && p1[2] > near && p2[2] > near && p3[2] > near) {
const face = new Face(p0, p1, p2, p3, j & 1);
faces.push(face);
}
}
}
faces.sort((a, b) => a.p0[2] - b.p0[2]);
function walk(i) {
faces[i].draw();
return i < faces.length - 1;
}
function project(p) {
p[1] += camera_z;
return [p[0] / p[1] * proj_xy_scale, p[2] / p[1] * proj_xy_scale, p[1]];
}
function getTorusPoint(i, j, R, r1, r2, nph, nth) {
const th = i / nth * Math.PI * 2.0;
const ph = j / nph * Math.PI * 2.0 + th;
return [
(R + r1 * Math.cos(th)) * Math.cos(ph),
(R + r1 * Math.cos(th)) * Math.sin(ph),
r2 * Math.sin(th)
];
}
////////////////////////////////////////////////////////////////
// Polygon Clipping utility code - Created by Reinder Nijhoff 2019
// https://turtletoy.net/turtle/a5befa1f8d
////////////////////////////////////////////////////////////////
function Polygons() {
const polygonList = [];
const Polygon = class {
constructor() {
this.cp = []; // clip path: array of [x,y] pairs
this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw
this.aabb = []; // AABB bounding box
}
addPoints(...points) {
// add point to clip path and update bounding box
let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5;
(this.cp = [...this.cp, ...points]).forEach( p => {
xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]);
ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]);
});
this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2];
}
addSegments(...points) {
// add segments (each a pair of points)
points.forEach(p => this.dp.push(p));
}
addOutline() {
for (let i = 0, l = this.cp.length; i < l; i++) {
this.dp.push(this.cp[i], this.cp[(i + 1) % l]);
}
}
draw(t) {
for (let i = 0, l = this.dp.length; i < l; i+=2) {
t.jump(this.dp[i]), t.goto(this.dp[i + 1]);
}
}
addHatching(a, d) {
const tp = new Polygon();
tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);
const dx = Math.sin(a) * d, dy = Math.cos(a) * d;
const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200;
for (let i = 0.5; i < 150 / d; i++) {
tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]);
tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]);
}
tp.boolean(this, false);
this.dp = [...this.dp, ...tp.dp];
}
inside(p) {
let int = 0; // find number of i ntersection points from p to far away
for (let i = 0, l = this.cp.length; i < l; i++) {
if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) {
int++;
}
}
return int & 1; // if even your outside
}
boolean(p, diff = true) {
// bouding box optimization by ge1doot.
if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 &&
Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0;
// polygon diff algorithm (narrow phase)
const ndp = [];
for (let i = 0, l = this.dp.length; i < l; i+=2) {
const ls0 = this.dp[i];
const ls1 = this.dp[i + 1];
// find all intersections with clip path
const int = [];
for (let j = 0, cl = p.cp.length; j < cl; j++) {
const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]);
if (pint !== false) {
int.push(pint);
}
}
if (int.length === 0) {
// 0 intersections, inside or outside?
if (diff === !p.inside(ls0)) {
ndp.push(ls0, ls1);
}
} else {
int.push(ls0, ls1);
// order intersection points on line ls.p1 to ls.p2
const cmpx = ls1[0] - ls0[0];
const cmpy = ls1[1] - ls0[1];
int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy -
(b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy);
for (let j = 0; j < int.length - 1; j++) {
if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) {
if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) {
ndp.push(int[j], int[j+1]);
}
}
}
}
}
return (this.dp = ndp).length > 0;
}
//port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs
segment_intersect(l1p1, l1p2, l2p1, l2p2) {
const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]);
if (d === 0) return false;
const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]);
const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]);
const ua = n_a / d;
const ub = n_b / d;
if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) {
return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])];
}
return false;
}
};
return {
list: () => polygonList,
create: () => new Polygon(),
draw: (turtle, p, addToVisList=true) => {
for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++);
p.draw(turtle);
if (addToVisList) polygonList.push(p);
}
};
}
////////////////////////////////////////////////////////////////
// Slowpoke utility code. Created by Reinder Nijhoff 2019
// https://turtletoy.net/turtle/cfe9091ad8
////////////////////////////////////////////////////////////////
function Slowpoke(x, y) {
const linesDrawn = {};
class Slowpoke extends Turtle {
goto(x, y) {
const p = Array.isArray(x) ? [...x] : [x, y];
if (this.isdown()) {
const o = [this.x(), this.y()];
const h1 = o[0].toFixed(2)+'_'+p[0].toFixed(2)+o[1].toFixed(2)+'_'+p[1].toFixed(2);
const h2 = p[0].toFixed(2)+'_'+o[0].toFixed(2)+p[1].toFixed(2)+'_'+o[1].toFixed(2);
if (linesDrawn[h1] || linesDrawn[h2]) {
super.up();
super.goto(p);
super.down();
return;
}
linesDrawn[h1] = linesDrawn[h2] = true;
}
super.goto(p);
}
}
return new Slowpoke(x,y);
}