tree rings

tree rings

Log in to post a comment.

// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(1);
const noise = SimplexNoise(Math.random()*1000);

// Global code will be evaluated once.
const turtle1 = new Turtle();

let size = 1;


// The walk function will be called until it returns false.
function walk(i) {
    turtle1.penup();

    for (let r=0; r<2*Math.PI+0.01; r+=0.01) {
        let x = Math.sin(r);
        let y = Math.cos(r);
        let distortion = noise.noise2D([x*2,y]);
        //console.log(distortion);
        x *= size+(distortion*size/10);
        y *= size+(distortion*size/10);
        
        turtle1.goto(x, y);
        turtle1.pendown();

    }
    size += (50-i)/15;
    return i<50;
    
}




////////////////////////////////////////////////////////////////
// Simplex Noise utility code. Created by Reinder Nijhoff 2020
// https://turtletoy.net/turtle/6e4e06d42e
// Based on: http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
////////////////////////////////////////////////////////////////
function SimplexNoise(seed = 1) {
	const grad = [  [1, 1, 0], [-1, 1, 0], [1, -1, 0], [-1, -1, 0],
	            	[1, 0, 1], [-1, 0, 1], [1, 0, -1], [-1, 0, -1],
            		[0, 1, 1], [0, -1, 1], [0, 1, -1], [0, -1, -1] ];
	const perm = new Uint8Array(512);
            		
	const F2 = (Math.sqrt(3) - 1) / 2, F3 = 1/3;
	const G2 = (3 - Math.sqrt(3)) / 6, G3 = 1/6;

	const dot2 = (a, b) => a[0] * b[0] + a[1] * b[1];
	const sub2 = (a, b) => [a[0] - b[0], a[1] - b[1]];
	const dot3 = (a, b) => a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
	const sub3 = (a, b) => [a[0] - b[0], a[1] - b[1], a[2] - b[2]];

	class SimplexNoise {
		constructor(seed = 1) {
			for (let i = 0; i < 512; i++) {
				perm[i] = i & 255;
			}
			for (let i = 0; i < 255; i++) {
				const r = (seed = this.hash(i+seed)) % (256 - i)  + i;
				const swp = perm[i];
				perm[i + 256] = perm[i] = perm[r];
				perm[r + 256] = perm[r] = swp;
			}
		}
		noise2D(p) {
			const s = dot2(p, [F2, F2]);
			const c = [Math.floor(p[0] + s), Math.floor(p[1] + s)];
			const i = c[0] & 255, j = c[1] & 255;
			const t = dot2(c, [G2, G2]);

			const p0 = sub2(p, sub2(c, [t, t]));
			const o  = p0[0] > p0[1] ? [1, 0] : [0, 1];
			const p1 = sub2(sub2(p0, o), [-G2, -G2]);
			const p2 = sub2(p0, [1-2*G2, 1-2*G2]);
			
			let n =  Math.max(0, 0.5-dot2(p0, p0))**4 * dot2(grad[perm[i+perm[j]] % 12], p0);
			    n += Math.max(0, 0.5-dot2(p1, p1))**4 * dot2(grad[perm[i+o[0]+perm[j+o[1]]] % 12], p1);
		    	n += Math.max(0, 0.5-dot2(p2, p2))**4 * dot2(grad[perm[i+1+perm[j+1]] % 12], p2);
			
			return 70 * n;
		}
		hash(i) {
            i = 1103515245 * ((i >> 1) ^ i);
            const h32 = 1103515245 * (i ^ (i>>3));
            return h32 ^ (h32 >> 16);
		}
	}
	return new SimplexNoise(seed);
}