Fork of the torus by @reinder, modified for drawing on a lower-resolution plotter which uses whiteboard markers (thicker lines). Also added adjustable variables.
Log in to post a comment.
// Forked from "Torus" by reinder // https://turtletoy.net/turtle/90e6288a6b // Torus. Created by Reinder Nijhoff 2019 // @reindernijhoff // // https://turtletoy.net/turtle/90e6288a6b // // I have combined code from @flockaroo (https://turtletoy.net/turtle/2dc4806767) // and the cleaned up version of my own occlusion code by @ge1doot // (https://turtletoy.net/turtle/c2cf454d80). // const turtle = new Slowpoke(); const polygons = Polygons(); const faces = []; const nth = 120; const nph = 16; // min=6, max=60, step=2 const radius_0 = 70; // min=20, max=80, step=1 const radius_1 = 55; // min=35, max=75, step=1 const radius_2 = 55; // min=35, max=75, step=1 const proj_xy_scale = 80; // min=10, max=100, step=1 const camera_z = 65; // min=10, max=120, step=1 const near = 5; const hatching_step = 2; // min=0.5, max=10, step=0.1 class Face { constructor (p0, p1, p2, p3, d) { this.p0 = p0; this.p1 = p1; this.p2 = p2; this.p3 = p3; this.dark = d; } draw () { const p = polygons.create(); p.addPoints(this.p0, this.p1, this.p3, this.p2); p.addSegments( this.p0, this.p1, this.p2, this.p3 ); if (this.dark) { p.addHatching(-Math.PI / 4, 1); } polygons.draw(turtle, p); } }; for (let i = 0; i < nth; i++) { for (let j = 0; j < nph; j++) { let p0 = getTorusPoint(i, j, radius_0, radius_1, radius_2, nph, nth); let p1 = getTorusPoint(i + 1, j, radius_0, radius_1, radius_2, nph, nth); let p2 = getTorusPoint(i, j + 1, radius_0, radius_1, radius_2, nph, nth); let p3 = getTorusPoint(i + 1, j + 1, radius_0, radius_1, radius_2, nph, nth); p0 = project(p0); p1 = project(p1); p2 = project(p2); p3 = project(p3); if (p0[2] > near && p1[2] > near && p2[2] > near && p3[2] > near) { const face = new Face(p0, p1, p2, p3, j & 1); faces.push(face); } } } faces.sort((a, b) => a.p0[2] - b.p0[2]); function walk(i) { faces[i].draw(); return i < faces.length - 1; } function project(p) { p[1] += camera_z; return [p[0] / p[1] * proj_xy_scale, p[2] / p[1] * proj_xy_scale, p[1]]; } function getTorusPoint(i, j, R, r1, r2, nph, nth) { const th = i / nth * Math.PI * 2.0; const ph = j / nph * Math.PI * 2.0 + th; return [ (R + r1 * Math.cos(th)) * Math.cos(ph), (R + r1 * Math.cos(th)) * Math.sin(ph), r2 * Math.sin(th) ]; } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d lines [x0,y0],[x1,y1] to draw this.aabb = []; // AABB bounding box } addPoints(...points) { // add point to clip path and update bounding box let xmin = 1e5, xmax = -1e5, ymin = 1e5, ymax = -1e5; (this.cp = [...this.cp, ...points]).forEach( p => { xmin = Math.min(xmin, p[0]), xmax = Math.max(xmax, p[0]); ymin = Math.min(ymin, p[1]), ymax = Math.max(ymax, p[1]); }); this.aabb = [(xmin+xmax)/2, (ymin+ymax)/2, (xmax-xmin)/2, (ymax-ymin)/2]; } addSegments(...points) { // add segments (each a pair of points) points.forEach(p => this.dp.push(p)); } addOutline() { for (let i = 0, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { for (let i = 0, l = this.dp.length; i < l; i+=2) { t.jump(this.dp[i]), t.goto(this.dp[i + 1]); } } addHatching(a, d) { const tp = new Polygon(); tp.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]); const dx = Math.sin(a) * d, dy = Math.cos(a) * d; const cx = Math.sin(a) * 200, cy = Math.cos(a) * 200; for (let i = hatching_step / 2; i < 150 / d; i += hatching_step) { tp.dp.push([dx * i + cy, dy * i - cx], [dx * i - cy, dy * i + cx]); tp.dp.push([-dx * i + cy, -dy * i - cx], [-dx * i - cy, -dy * i + cx]); } tp.boolean(this, false); this.dp = [...this.dp, ...tp.dp]; } inside(p) { let int = 0; // find number of i ntersection points from p to far away for (let i = 0, l = this.cp.length; i < l; i++) { if (this.segment_intersect(p, [0.1, -1000], this.cp[i], this.cp[(i + 1) % l])) { int++; } } return int & 1; // if even your outside } boolean(p, diff = true) { // bouding box optimization by ge1doot. if (Math.abs(this.aabb[0] - p.aabb[0]) - (p.aabb[2] + this.aabb[2]) >= 0 && Math.abs(this.aabb[1] - p.aabb[1]) - (p.aabb[3] + this.aabb[3]) >= 0) return this.dp.length > 0; // polygon diff algorithm (narrow phase) const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.segment_intersect(ls0, ls1, p.cp[j], p.cp[(j + 1) % cl]); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; int.sort( (a,b) => (a[0] - ls0[0]) * cmpx + (a[1] - ls0[1]) * cmpy - (b[0] - ls0[0]) * cmpx - (b[1] - ls0[1]) * cmpy); for (let j = 0; j < int.length - 1; j++) { if ((int[j][0] - int[j+1][0])**2 + (int[j][1] - int[j+1][1])**2 >= 0.001) { if (diff === !p.inside([(int[j][0]+int[j+1][0])/2,(int[j][1]+int[j+1][1])/2])) { ndp.push(int[j], int[j+1]); } } } } } return (this.dp = ndp).length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1])]; } return false; } }; return { list: () => polygonList, create: () => new Polygon(), draw: (turtle, p, addToVisList=true) => { for (let j = 0; j < polygonList.length && p.boolean(polygonList[j]); j++); p.draw(turtle); if (addToVisList) polygonList.push(p); } }; } //////////////////////////////////////////////////////////////// // Slowpoke utility code. Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/cfe9091ad8 //////////////////////////////////////////////////////////////// function Slowpoke(x, y) { const linesDrawn = {}; class Slowpoke extends Turtle { goto(x, y) { const p = Array.isArray(x) ? [...x] : [x, y]; if (this.isdown()) { const o = [this.x(), this.y()]; const h1 = o[0].toFixed(2)+'_'+p[0].toFixed(2)+o[1].toFixed(2)+'_'+p[1].toFixed(2); const h2 = p[0].toFixed(2)+'_'+o[0].toFixed(2)+p[1].toFixed(2)+'_'+o[1].toFixed(2); if (linesDrawn[h1] || linesDrawn[h2]) { super.up(); super.goto(p); super.down(); return; } linesDrawn[h1] = linesDrawn[h2] = true; } super.goto(p); } } return new Slowpoke(x,y); }