Initial contact
Log in to post a comment.
// You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(0.6); const turtle = new Turtle(); turtle.penup(); const polygons = Polygons(); const cube = []; /////////////////////////////////// const ax = Math.random() - 0.5; const ay = Math.random() - 0.5; const fov = 250; const zoom = 0.2; /////////////////////////////////// const angle = { cx: Math.cos(ax), sx: Math.sin(ax), cy: Math.cos(ay), sy: Math.sin(ay) } const Point = class { constructor (x, y, z) { this.x = x; this.y = y; this.z = z; this.xp = 0; this.yp = 0; this.scale = 0; } project (cube, angle) { const x = this.x; const y = this.y; const z = this.z; const xy = angle.cx * y - angle.sx * z; const xz = angle.sx * y + angle.cx * z; const yz = angle.cy * xz - angle.sy * x; const yx = angle.sy * xz + angle.cy * x; this.scale = fov / (fov + yz); this.xp = yx * this.scale * zoom; this.yp = xy * this.scale * zoom; if (yz < -fov) cube.visible = false; } }; const Cube = class { constructor (x, y, z, w, h, p) { this.visible = true; this.coord = [ new Point(x - w, y - h, z), new Point(x + w, y - h, z), new Point(x + w, y + h, z), new Point(x - w, y + h, z), new Point(x - w, y - h, z + p), new Point(x + w, y - h, z + p), new Point(x + w, y + h, z + p), new Point(x - w, y + h, z + p) ]; const c = this.coord; this.faces = [ [c[0], c[1], c[2], c[3], 0], [c[0], c[4], c[5], c[1], 0], [c[3], c[2], c[6], c[7], 0], [c[0], c[3], c[7], c[4], 1], [c[1], c[5], c[6], c[2], 1], [c[5], c[4], c[7], c[6], 0] ]; } project () { for (let i = 0; i < 8; i++) { this.coord[i].project(this, angle); } for (let f = 0; f < 6; f++) { const p = this.faces[f]; if (this.visible && ((p[1].yp - p[0].yp) / (p[1].xp - p[0].xp) < (p[2].yp - p[0].yp) / (p[2].xp - p[0].xp) ^ p[0].xp < p[1].xp == p[0].xp > p[2].xp)) { const poly = polygons.create(); poly.addPoints([p[0].xp, p[0].yp], [p[1].xp, p[1].yp], [p[2].xp, p[2].yp], [p[3].xp, p[3].yp]); if (p[4]) { const a = Math.atan2(-p[0].yp + p[1].yp, p[0].xp - p[1].xp); poly.addHatching(a, Math.min(1, Math.max(0.1, p[0].scale * 0.1))); } poly.addOutline(0); polygons.draw(turtle, poly); } } } }; // create cubes structure const r = (d0, d1) => Math.round(Math.random() * (d1 - d0) + d0); let w = 50; for (let z = 400; z > -400; z -= 20) { cube.push( new Cube( r(-w, w), r(-w, w), z, r(2, 30), r(2, 30), r(2, 180) ) ); if (z > -100 && z < 100) { for (let i = 0; i < 4; i++) { cube.push( new Cube( r(-400, 400), r(-w, w), z, r(2, 80), r(2, 30), r(2, 30) ) ); cube.push( new Cube( r(-w, w), r(-400, 400), z, r(2, 30), r(2, 80), r(2, 30) ) ); } } } cube.forEach(c => c.project()); //////////////////////////////////////////////////////////////// // reinder's occlusion code parts from "Cubic space division #2" // Optimizations and code clean-up by ge1doot //////////////////////////////////////////////////////////////// function Polygons() { const polygonList = []; const linesDrawn = []; const Polygon = class { constructor() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d line to draw this.aabb = []; // AABB bounding box } addPoints(...points) { for (let i = 0; i < points.length; i++) this.cp.push(points[i]); this.aabb = this.AABB(); } addOutline(s = 0) { for (let i = s, l = this.cp.length; i < l; i++) { this.dp.push(this.cp[i], this.cp[(i + 1) % l]); } } draw(t) { if (this.dp.length === 0) return; for (let i = 0, l = this.dp.length; i < l; i+=2) { const d0 = this.dp[i]; const d1 = this.dp[i + 1]; const line_hash = Math.min(d0[0], d1[0]).toFixed(2) + "-" + Math.max(d0[0], d1[0]).toFixed(2) + "-" + Math.min(d0[1], d1[1]).toFixed(2) + "-" + Math.max(d0[1], d1[1]).toFixed(2); if (!linesDrawn[line_hash]) { t.penup(); t.goto(d0); t.pendown(); t.goto(d1); linesDrawn[line_hash] = true; } } } AABB() { let xmin = 2000; let xmax = -2000; let ymin = 2000; let ymax = -2000; for (let i = 0, l = this.cp.length; i < l; i++) { const x = this.cp[i][0]; const y = this.cp[i][1]; if (x < xmin) xmin = x; if (x > xmax) xmax = x; if (y < ymin) ymin = y; if (y > ymax) ymax = y; } // Bounding box: center x, center y, half w, half h return [ (xmin + xmax) * 0.5, (ymin + ymax) * 0.5, (xmax - xmin) * 0.5, (ymax - ymin) * 0.5 ]; } addHatching(a, d) { a += Math.PI / 2; const tp = new Polygon(); const x = this.aabb[0], y = this.aabb[1]; const w = this.aabb[2], h = this.aabb[3]; const l = Math.sqrt((w * 2) ** 2 + (h * 2) ** 2) * 0.5; tp.cp.push([x - w, y - h], [x + w, y - h], [x + w, y + h], [x - w, y + h]); const cx = Math.sin(a) * l, cy = Math.cos(a) * l; let px = x - Math.cos(a) * l; let py = y - Math.sin(a) * l; for (let i = 0; i < l * 2; i += d) { tp.dp.push([px + cx, py - cy], [px - cx, py + cy]); px += Math.cos(a) * d; py += Math.sin(a) * d; } tp.boolean(this, false); for (const dp of tp.dp) this.dp.push(dp); } inside(p) { // find number of i ntersection points from p to far away const p1 = [0.1, -1000]; let int = 0; for (let i = 0, l = this.cp.length; i < l; i++) { if ( (p[0]-this.cp[i][0])**2 + (p[1]-this.cp[i][1])**2 <= 0.001) return false; if ( this.vec2_find_segment_intersect( p, p1, this.cp[i], this.cp[(i + 1) % l] ) !== false ) { int++; } } return int & 1; } boolean(p, diff = true) { // polygon diff algorithm const ndp = []; for (let i = 0, l = this.dp.length; i < l; i+=2) { const ls0 = this.dp[i]; const ls1 = this.dp[i + 1]; // find all intersections with clip path const int = []; for (let j = 0, cl = p.cp.length; j < cl; j++) { const pint = this.vec2_find_segment_intersect( ls0, ls1, p.cp[j], p.cp[(j + 1) % cl] ); if (pint !== false) { int.push(pint); } } if (int.length === 0) { // 0 intersections, inside or outside? if (diff === !p.inside(ls0)) { ndp.push(ls0, ls1); } } else { int.push(ls0, ls1); // order intersection points on line ls.p1 to ls.p2 const cmpx = ls1[0] - ls0[0]; const cmpy = ls1[1] - ls0[1]; for (let i = 0, len = int.length; i < len; i++) { let j = i; const item = int[j]; for ( const db = (item[0] - ls0[0]) * cmpx + (item[1] - ls0[1]) * cmpy; j > 0 && (int[j - 1][0] - ls0[0]) * cmpx + (int[j - 1][1] - ls0[1]) * cmpy < db; j-- ) int[j] = int[j - 1]; int[j] = item; } for (let j = 0; j < int.length - 1; j++) { if ( (int[j][0] - int[j + 1][0]) ** 2 + (int[j][1] - int[j + 1][1]) ** 2 >= 0.01 ) { if ( diff === !p.inside([ (int[j][0] + int[j + 1][0]) / 2, (int[j][1] + int[j + 1][1]) / 2 ]) ) { ndp.push(int[j], int[j + 1]); } } } } } this.dp = ndp; return this.dp.length > 0; } //port of http://paulbourke.net/geometry/pointlineplane/Helpers.cs vec2_find_segment_intersect(l1p1, l1p2, l2p1, l2p2) { const d = (l2p2[1] - l2p1[1]) * (l1p2[0] - l1p1[0]) - (l2p2[0] - l2p1[0]) * (l1p2[1] - l1p1[1]); if (d === 0) return false; const n_a = (l2p2[0] - l2p1[0]) * (l1p1[1] - l2p1[1]) - (l2p2[1] - l2p1[1]) * (l1p1[0] - l2p1[0]); const n_b = (l1p2[0] - l1p1[0]) * (l1p1[1] - l2p1[1]) - (l1p2[1] - l1p1[1]) * (l1p1[0] - l2p1[0]); const ua = n_a / d; const ub = n_b / d; if (ua >= 0 && ua <= 1 && ub >= 0 && ub <= 1) { return [ l1p1[0] + ua * (l1p2[0] - l1p1[0]), l1p1[1] + ua * (l1p2[1] - l1p1[1]) ]; } return false; } }; return { create() { return new Polygon(); }, draw(t, p) { let vis = true; for (let j = 0; j < polygonList.length; j++) { const p1 = polygonList[j]; // AABB overlapping test - still O(N2) but very fast if ( Math.abs(p1.aabb[0] - p.aabb[0]) - (p.aabb[2] + p1.aabb[2]) < 0 && Math.abs(p1.aabb[1] - p.aabb[1]) - (p.aabb[3] + p1.aabb[3]) < 0 ) { if (p.boolean(p1) === false) { vis = false; break; } } } if (vis) { p.draw(t); polygonList.push(p); } } }; }