Because Reinder asked
Log in to post a comment.
// You can find the Turtle API reference here: https://turtletoy.net/syntax
Canvas.setpenopacity(0.01);
// movement parameters
const numSteps = 30
const startZ = 4.5
const endZ = -2.4
const startX = 3.6
const endX = -0.3
const startY = 4.
const yInitSpeed = 0
const gravity = -9.8
const ground = -0.76
const bounceSpeedLoss = 0.65 // perun
// sphere render options
const intensity = 10
// instances
var sphere
var camera
var lightPos
function init() {
camera = new Camera([0, 0, -3], [0, 0, 0])
lightPos = [-4, 10, -1]
sphere = new Sphere(2, startZ - endZ)
}
// walk
let turtle = new Turtle() // one turtle to rule them all
function walk(i) {
if (i == 19) return true; // dirty hack to prevent that one overlap
for (let j = 0; j < 10; j++) {
let t = i/numSteps + 0.5/numSteps + (j - 5) * 0.0004
let x = lerp(startX, endX, t)
let y = getBouncingAcceleratedPos(t * 2.7, startY, yInitSpeed, gravity, ground)
let z = lerp(startZ, endZ, t)
sphere.setRotationPositionScale(quat.create(), [x, y, z], 0.05)
sphere.draw()
}
return i < numSteps
}
// Classes
function Sphere(depth, maxDist) {
this.vertices = []
this.indices = []
this.triangles = []
this.modelMatrix = mat4.create()
this.invModelMatrix = mat4.create()
this.position = [0, 0, 0]
this.setRotationPositionScale = function(rotation, position, scale) {
this.position = position
mat4.fromRotationTranslationScale(this.modelMatrix, rotation, position, [scale, scale, scale])
mat4.invert(this.invModelMatrix, this.modelMatrix)
}
this.init = function() {
this.initializeSphere()
for (let i = 0; i < depth; i++) {
this.subdivide()
}
for (let vertex of this.vertices) {
vec3.normalize(vertex, vertex);
}
for (let vertex of this.vertices) {
let theta = Math.acos(vertex[2]) // r = 1
let phi = Math.atan2(vertex[1],vertex[0])
// let newR = 1 + phi * 0.1
// vertex[0] = newR * Math.sin(theta) * Math.cos(phi)
// vertex[1] = newR * Math.sin(theta) * Math.sin(phi)
// vertex[2] = newR * Math.cos(theta)
}
for (let i = 0; i < this.indices.length; i+=3) {
let triangle = new Triangle(
this.vertices[this.indices[i]],
this.vertices[this.indices[i + 1]],
this.vertices[this.indices[i + 2]])
this.triangles.push(triangle)
}
}
this.initializeSphere = function() {
let X = 0.525731112119133606;
let Z = 0.850650808352039932;
this.vertices = [
[-X, 0.0, Z], [ X, 0.0, Z ], [ -X, 0.0, -Z ], [ X, 0.0, -Z ],
[ 0.0, Z, X ], [ 0.0, Z, -X ], [ 0.0, -Z, X ], [ 0.0, -Z, -X ],
[ Z, X, 0.0 ], [ -Z, X, 0.0 ], [ Z, -X, 0.0 ], [ -Z, -X, 0.0 ]
]
this.indices = [
1, 4, 0,
4, 9, 0,
4, 5, 9,
8, 5, 4,
1, 8, 4,
1, 10, 8,
10, 3, 8,
8, 3, 5,
3, 2, 5,
3, 7, 2,
3, 10, 7,
10, 6, 7,
6, 11, 7,
6, 0, 11,
6, 1, 0,
10, 1, 6,
11, 0, 9,
2, 11, 9,
5, 2, 9,
11, 2, 7
];
}
this.subdivide = function() {
// cache of midpoint indices
var midpointIndices = [];
// create lists instead...
var l = this.indices.length;
var subdividedIndices = [];
var subdividedVertices = this.vertices;
// subdivide each triangle
for (var i = 0; i < l - 2; i += 3) {
// grab indices of triangle
var i0 = this.indices[i];
var i1 = this.indices[i + 1];
var i2 = this.indices[i + 2];
// calculate new indices
var m01 = this.getMidpointIndex(midpointIndices, subdividedVertices, i0, i1);
var m12 = this.getMidpointIndex(midpointIndices, subdividedVertices, i1, i2);
var m02 = this.getMidpointIndex(midpointIndices, subdividedVertices, i2, i0);
subdividedIndices.push(
i0, m01, m02,
i1, m12, m01,
i2, m02, m12,
m02, m01, m12);
}
this.indices = subdividedIndices.slice();
}
this.getMidpointIndex = function(midpointIndices, vertices, i0, i1) {
if (midpointIndices[i0] && midpointIndices[i0][i1]) {
return midpointIndices[i0][i1];
}
if (midpointIndices[i1] && midpointIndices[i1][i0]) {
return midpointIndices[i1][i0];
}
if (!midpointIndices[i0]) midpointIndices[i0] = [];
return this.addVertex(midpointIndices, vertices, i0, i1);
}
this.addVertex = function(midpointIndices, vertices, i0, i1) {
//there is no vertex between these vertices yet
var v0 = this.vertices[i0];
var v1 = this.vertices[i1];
var midpoint = [0, 0, 0];
vec3.add(midpoint, v0, v1)
vec3.multiply(midpoint, midpoint, [0.5, 0.5, 0.5])
var midpointIndex = vertices.length;
midpointIndices[i0][i1] = midpointIndex;
this.vertices.push(midpoint);
return midpointIndex;
}
this.draw = function() {
let distance = this.position[2] - endZ
let distScale = 1 - Math.min(Math.pow(distance/maxDist, 0.25), 0.999)
//console.log("distance " + distance + ", distScale " + distScale)
for (let triangle of this.triangles) {
this.drawSphereTriangle(triangle, distScale * intensity)
}
}
this.drawSphereTriangle = function(triangle, darkness) {
let visible = this.isFrontfacing(camera.position, triangle)
if (visible) {
let frontFacingAmount = this.frontFacingAmount(camera.position, triangle)
let fresnel = Math.pow((1 - frontFacingAmount), 1.5)
let specular = this.getSpecular(camera.position, lightPos, triangle)
let shading = 16 * Math.min((1 - specular), 1) * fresnel * darkness
drawTriangle(triangle, camera, this.modelMatrix, shading)
}
}
this.isFrontfacing = function(camPos, triangle) {
// all in local space
let localCamera = vec3.transformMat4([], camera.position, this.invModelMatrix)
let center = getCenter(triangle) // note: it's a unit sphere so point == normal
let camToTriangle = vec3.subtract([], center, localCamera)
return vec3.dot(camToTriangle, center) < 0
}
this.frontFacingAmount = function(camPos, triangle) {
let localCamera = vec3.transformMat4([], camera.position, this.invModelMatrix)
vec3.normalize(localCamera, localCamera)
let trianglePos = getCenter(triangle)
vec3.normalize(trianglePos, trianglePos)
return Math.abs(Math.acos(vec3.dot(trianglePos, localCamera)) / (0.5 * Math.PI))
}
this.getSpecular = function(camPos, lightPos, triangle) {
// all in local space
let localCamera = vec3.transformMat4([], camPos, this.invModelMatrix)
let localLight = vec3.transformMat4([], lightPos, this.invModelMatrix)
let trianglePos = getCenter(triangle)
let normal = trianglePos
let viewDirection = vec3.normalize([], vec3.subtract([], localCamera, trianglePos))
let lightDirection = vec3.normalize([], localLight)
if (vec3.dot(normal, lightDirection) < 0.0) {
return 0
}
else {
let inverted = vec3.scale([], lightDirection, -1)
let reflected = this.reflect(inverted, normal)
let reflectedDotted = vec3.dot(reflected, viewDirection)
return Math.pow(Math.max(0.0, reflectedDotted), 1)
}
}
this.getDistance = function(camPos, triangle) {
let worldTrianglePos = vec3.transformMat4([], getCenter(triangle), this.modelMatrix)
return vec3.distance(camPos, worldTrianglePos)
}
this.reflect = function(incident, normal) {
let dotted = vec3.dot(normal, incident)
let multiplied = vec3.scale([], normal, dotted * 2)
return vec3.subtract([], incident, multiplied)
}
this.init()
}
function Line(v0, v1) {
//console.log("new line ", v0, v1)
this.pluckerCoords = [];
this.v0 = v0
this.v1 = v1
this.pluckerCoords[0] = v0[0] * v1[1] - v1[0] * v0[1];
this.pluckerCoords[1] = v0[0] * v1[2] - v1[0] * v0[2];
this.pluckerCoords[2] = v0[0] - v1[0];
this.pluckerCoords[3] = v0[1] * v1[2] - v1[1] * v0[2];
this.pluckerCoords[4] = v0[2] - v1[2];
this.pluckerCoords[5] = v1[1] - v0[1];
this.toString = function() {
return "<" + printVertex(this.v0) + " | " + printVertex(this.v1) + ">";
}
}
function Triangle(v0, v1, v2) {
this.v0 = v0
this.v1 = v1
this.v2 = v2
this.edge = function(index) {
switch (index) {
case 0:
return new Line(this.v0, this.v1);
case 1:
return new Line(this.v1, this.v2);
case 2:
return new Line(this.v2, this.v0);
}
}
this.toString = function() {
return "<" + printVertex(this.v0) + " | " + printVertex(this.v1) + " | " + printVertex(this.v2) + ">";
}
this.transformedCopy = function(matrix) {
let newV0 = [0, 0, 0]
let newV1 = [0, 0, 0]
let newV2 = [0, 0, 0]
vec3.transformMat4(newV0, this.v0, matrix)
vec3.transformMat4(newV1, this.v1, matrix)
vec3.transformMat4(newV2, this.v2, matrix)
return new Triangle(newV0, newV1, newV2)
}
}
function Camera(position, lookAt) {
this.position = position
this.lookAt = lookAt
this.fov = 0.5
this.nearPlane = 1
this.farPlane = 1000
this.aspect = 1
this.projectionMatrix = []
this.cameraMatrix = []
this.dirty = true
this.getPerspectiveMatrix = function() {
this.updateMatrices()
return this.projectionMatrix
}
this.getCameraMatrix = function() {
this.updateMatrices()
return this.cameraMatrix
}
this.updateMatrices = function() {
if (this.dirty) {
this.projectionMatrix = mat4.create()
mat4.perspective(this.projectionMatrix, this.fov, this.aspect, this.nearPlane, this.farPlane)
this.cameraMatrix = mat4.create()
mat4.lookAt(this.cameraMatrix, camera.position, camera.lookAt, [0,1,0])
this.dirty = false
}
}
}
// Utility functions
function drawTriangle(triangle, camera, modelMatrix, levels = 1) {
let center = getCenter(triangle)
let levelsRound = Math.round(levels)
for (let i = 1; i < levelsRound + 1; i++) {
let levelScale = i/(levelsRound + 1)
turtle.penup()
turtle.goto(renderVertex(lerp3(center, triangle.v2, levelScale), camera, modelMatrix))
turtle.pendown()
turtle.goto(renderVertex(lerp3(center, triangle.v0, levelScale), camera, modelMatrix))
turtle.goto(renderVertex(lerp3(center, triangle.v1, levelScale), camera, modelMatrix))
turtle.goto(renderVertex(lerp3(center, triangle.v2, levelScale), camera, modelMatrix))
}
}
function renderVertex(vertex, camera, modelMatrix = []) {
if (typeof finalMatrix == "undefined") finalMatrix = mat4.create()
if (modelMatrix.length > 0) {
mat4.multiply(finalMatrix, camera.getCameraMatrix(), modelMatrix)
mat4.multiply(finalMatrix, camera.getPerspectiveMatrix(), finalMatrix)
}
else {
mat4.multiply(finalMatrix, camera.getPerspectiveMatrix(), cameraMatrix)
}
vertex = vertex.concat(1)
vec4.transformMat4(vertex, vertex, finalMatrix)
x = vertex[0] / vertex[3]
y = vertex[1] / vertex[3]
z = vertex[2] / vertex[3]
// to canvas coords
x = -x * 50
y = -y * 50
return [x, y, z]
}
function lerp3(from, to, amount) {
let x = lerp(from[0], to[0], amount)
let y = lerp(from[1], to[1], amount)
let z = lerp(from[2], to[2], amount)
return [x, y, z]
}
function lerp(a, b, amount) {
return a * (1 - amount) + b * amount
}
function getCenter(triangle) {
return [
(triangle.v0[0] + triangle.v1[0] + triangle.v2[0]) / 3,
(triangle.v0[1] + triangle.v1[1] + triangle.v2[1]) / 3,
(triangle.v0[2] + triangle.v1[2] + triangle.v2[2]) / 3,
]
}
// Movement untility functions
const MAX_BOUNCES = 100
function getBouncingAcceleratedPos(t, start, startSpeed, acceleration, ground) {
let y = getAcceleratedPos(t, start, startSpeed, acceleration)
if (y > ground) return y
let bounces = 0
let tOffset = 0
let posOffset = start
let speedOffset = startSpeed
while (y < ground && bounces++ < MAX_BOUNCES) {
let tBounce = getTimeForAcceleratedPos(ground, posOffset, speedOffset, acceleration)
let afterBounceSpeed = getAcceleratedSpeed(tBounce, speedOffset, acceleration) * bounceSpeedLoss * -1
posOffset = ground
speedOffset = afterBounceSpeed
tOffset += tBounce
y = getAcceleratedPos(t - tOffset, posOffset, speedOffset, gravity)
}
return y
}
function getAcceleratedPos(t, start, startSpeed, acceleration) {
return start + startSpeed * t + 0.5 * acceleration * Math.pow(t, 2)
}
function getAcceleratedSpeed(t, startSpeed, acceleration) {
return acceleration * t + startSpeed
}
function getTimeForAcceleratedPos(pos, start, startSpeed, acceleration) {
if (acceleration == 0) return 0
let result1 = (Math.sqrt(Math.pow(startSpeed, 2) - 2 * acceleration * (start - pos)) - startSpeed) / acceleration
let result2 = (-Math.sqrt(Math.pow(startSpeed, 2) - 2 * acceleration * (start - pos)) - startSpeed) / acceleration
// assuming we only want the positive result
return Math.max(result1, result2)
}
// gl-matrix
EPSILON = 0.00001;
halfToRad = 0.5 * Math.PI / 180.0;
function vec3() {
this.add = function(out, a, b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
return out;
}
this.subtract = function(out, a, b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
return out;
}
this.multiply = function(out, a, b) {
out[0] = a[0] * b[0];
out[1] = a[1] * b[1];
out[2] = a[2] * b[2];
return out;
}
this.normalize = function(out, a) {
let x = a[0];
let y = a[1];
let z = a[2];
let len = x*x + y*y + z*z;
if (len > 0) {
//TODO: evaluate use of glm_invsqrt here?
len = 1 / Math.sqrt(len);
}
out[0] = a[0] * len;
out[1] = a[1] * len;
out[2] = a[2] * len;
return out;
}
this.scale = function(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
return out;
}
this.distance = function(a, b) {
let x = b[0] - a[0];
let y = b[1] - a[1];
let z = b[2] - a[2];
return Math.sqrt(x*x + y*y + z*z);
}
this.dot = function (a, b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
this.transformMat4 = function(out, a, m) {
let x = a[0], y = a[1], z = a[2];
let w = m[3] * x + m[7] * y + m[11] * z + m[15];
w = w || 1.0;
out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) / w;
out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) / w;
out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) / w;
return out;
}
}
function vec4() {
this.transformMat4 = function(out, a, m) {
let x = a[0], y = a[1], z = a[2], w = a[3];
out[0] = m[0] * x + m[4] * y + m[8] * z + m[12] * w;
out[1] = m[1] * x + m[5] * y + m[9] * z + m[13] * w;
out[2] = m[2] * x + m[6] * y + m[10] * z + m[14] * w;
out[3] = m[3] * x + m[7] * y + m[11] * z + m[15] * w;
return out;
}
}
function mat4() {
this.create = function() {
return new Float32Array(16)
}
this.identity = function(out) {
out[0] = 1;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = 1;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = 1;
out[11] = 0;
out[12] = 0;
out[13] = 0;
out[14] = 0;
out[15] = 1;
return out;
}
this.lookAt = function(out, eye, center, up) {
let x0, x1, x2, y0, y1, y2, z0, z1, z2, len;
let eyex = eye[0];
let eyey = eye[1];
let eyez = eye[2];
let upx = up[0];
let upy = up[1];
let upz = up[2];
let centerx = center[0];
let centery = center[1];
let centerz = center[2];
if (Math.abs(eyex - centerx) < EPSILON &&
Math.abs(eyey - centery) < EPSILON &&
Math.abs(eyez - centerz) < EPSILON) {
return identity(out);
}
z0 = eyex - centerx;
z1 = eyey - centery;
z2 = eyez - centerz;
len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
z0 *= len;
z1 *= len;
z2 *= len;
x0 = upy * z2 - upz * z1;
x1 = upz * z0 - upx * z2;
x2 = upx * z1 - upy * z0;
len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
if (!len) {
x0 = 0;
x1 = 0;
x2 = 0;
} else {
len = 1 / len;
x0 *= len;
x1 *= len;
x2 *= len;
}
y0 = z1 * x2 - z2 * x1;
y1 = z2 * x0 - z0 * x2;
y2 = z0 * x1 - z1 * x0;
len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
if (!len) {
y0 = 0;
y1 = 0;
y2 = 0;
} else {
len = 1 / len;
y0 *= len;
y1 *= len;
y2 *= len;
}
out[0] = x0;
out[1] = y0;
out[2] = z0;
out[3] = 0;
out[4] = x1;
out[5] = y1;
out[6] = z1;
out[7] = 0;
out[8] = x2;
out[9] = y2;
out[10] = z2;
out[11] = 0;
out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
out[15] = 1;
return out;
}
this.multiply = function(out, a, b) {
let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3];
let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7];
let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11];
let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
// Cache only the current line of the second matrix
let b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
out[0] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
out[1] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
out[2] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
out[3] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
b0 = b[4]; b1 = b[5]; b2 = b[6]; b3 = b[7];
out[4] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
out[5] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
out[6] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
out[7] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
b0 = b[8]; b1 = b[9]; b2 = b[10]; b3 = b[11];
out[8] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
out[9] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
out[10] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
out[11] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
b0 = b[12]; b1 = b[13]; b2 = b[14]; b3 = b[15];
out[12] = b0*a00 + b1*a10 + b2*a20 + b3*a30;
out[13] = b0*a01 + b1*a11 + b2*a21 + b3*a31;
out[14] = b0*a02 + b1*a12 + b2*a22 + b3*a32;
out[15] = b0*a03 + b1*a13 + b2*a23 + b3*a33;
return out;
}
this.perspective = function(out, fovy, aspect, near, far) {
let f = 1.0 / Math.tan(fovy / 2), nf;
out[0] = f / aspect;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = f;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[11] = -1;
out[12] = 0;
out[13] = 0;
out[15] = 0;
if (far != null && far !== Infinity) {
nf = 1 / (near - far);
out[10] = (far + near) * nf;
out[14] = (2 * far * near) * nf;
} else {
out[10] = -1;
out[14] = -2 * near;
}
return out;
}
this.fromRotationTranslationScale = function(out, q, v, s) {
// Quaternion math
let x = q[0], y = q[1], z = q[2], w = q[3];
let x2 = x + x;
let y2 = y + y;
let z2 = z + z;
let xx = x * x2;
let xy = x * y2;
let xz = x * z2;
let yy = y * y2;
let yz = y * z2;
let zz = z * z2;
let wx = w * x2;
let wy = w * y2;
let wz = w * z2;
let sx = s[0];
let sy = s[1];
let sz = s[2];
out[0] = (1 - (yy + zz)) * sx;
out[1] = (xy + wz) * sx;
out[2] = (xz - wy) * sx;
out[3] = 0;
out[4] = (xy - wz) * sy;
out[5] = (1 - (xx + zz)) * sy;
out[6] = (yz + wx) * sy;
out[7] = 0;
out[8] = (xz + wy) * sz;
out[9] = (yz - wx) * sz;
out[10] = (1 - (xx + yy)) * sz;
out[11] = 0;
out[12] = v[0];
out[13] = v[1];
out[14] = v[2];
out[15] = 1;
return out;
}
this.invert = function(out, a) {
let a00 = a[0], a01 = a[1], a02 = a[2], a03 = a[3];
let a10 = a[4], a11 = a[5], a12 = a[6], a13 = a[7];
let a20 = a[8], a21 = a[9], a22 = a[10], a23 = a[11];
let a30 = a[12], a31 = a[13], a32 = a[14], a33 = a[15];
let b00 = a00 * a11 - a01 * a10;
let b01 = a00 * a12 - a02 * a10;
let b02 = a00 * a13 - a03 * a10;
let b03 = a01 * a12 - a02 * a11;
let b04 = a01 * a13 - a03 * a11;
let b05 = a02 * a13 - a03 * a12;
let b06 = a20 * a31 - a21 * a30;
let b07 = a20 * a32 - a22 * a30;
let b08 = a20 * a33 - a23 * a30;
let b09 = a21 * a32 - a22 * a31;
let b10 = a21 * a33 - a23 * a31;
let b11 = a22 * a33 - a23 * a32;
// Calculate the determinant
let det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06;
if (!det) {
return null;
}
det = 1.0 / det;
out[0] = (a11 * b11 - a12 * b10 + a13 * b09) * det;
out[1] = (a02 * b10 - a01 * b11 - a03 * b09) * det;
out[2] = (a31 * b05 - a32 * b04 + a33 * b03) * det;
out[3] = (a22 * b04 - a21 * b05 - a23 * b03) * det;
out[4] = (a12 * b08 - a10 * b11 - a13 * b07) * det;
out[5] = (a00 * b11 - a02 * b08 + a03 * b07) * det;
out[6] = (a32 * b02 - a30 * b05 - a33 * b01) * det;
out[7] = (a20 * b05 - a22 * b02 + a23 * b01) * det;
out[8] = (a10 * b10 - a11 * b08 + a13 * b06) * det;
out[9] = (a01 * b08 - a00 * b10 - a03 * b06) * det;
out[10] = (a30 * b04 - a31 * b02 + a33 * b00) * det;
out[11] = (a21 * b02 - a20 * b04 - a23 * b00) * det;
out[12] = (a11 * b07 - a10 * b09 - a12 * b06) * det;
out[13] = (a00 * b09 - a01 * b07 + a02 * b06) * det;
out[14] = (a31 * b01 - a30 * b03 - a32 * b00) * det;
out[15] = (a20 * b03 - a21 * b01 + a22 * b00) * det;
return out;
}
}
function quat() {
this.create = function() {
let out = [];
out[0] = 0;
out[1] = 0;
out[2] = 0;
out[3] = 1;
return out;
}
this.fromEuler = function(out, x, y, z) {
x *= halfToRad;
y *= halfToRad;
z *= halfToRad;
let sx = Math.sin(x);
let cx = Math.cos(x);
let sy = Math.sin(y);
let cy = Math.cos(y);
let sz = Math.sin(z);
let cz = Math.cos(z);
out[0] = sx * cy * cz - cx * sy * sz;
out[1] = cx * sy * cz + sx * cy * sz;
out[2] = cx * cy * sz - sx * sy * cz;
out[3] = cx * cy * cz + sx * sy * sz;
return out;
}
}
vec3 = new vec3() // mimic static functions behavior
vec4 = new vec4()
quat = new quat()
mat4 = new mat4()
// end gl-matrix
init()