can you spot the kitchen?
Log in to post a comment.
const randomSeed = 123 // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(1); // Global code will be evaluated once. const turtle = new Turtle(); // helpers function avg(items) { return items.reduce((acc, curr) => acc + curr, 0) / items.length } function map(v, min, max, omin, omax) { return omin + (v - min) / (max - min) * (omax - omin) } function clamp(v, min, max) { return Math.max(Math.min(v, max), min) } function lerp(a, b, fract) { return a + (b - a) * fract } function randomFrom(arr) { return arr[Math.floor(Random.random() * arr.length)] } function isWithin(x, min, max) { return min <= x && x <= max } // vector class Vec2 { constructor(x, y) { this.x = x this.y = y } rotate(angle) { return new Vec2( this.x * Math.cos(angle) - this.y * Math.sin(angle), this.x * Math.sin(angle) + this.y * Math.cos(angle) ) } multn(n) { return new Vec2(this.x * n, this.y * n) } add(pt) { return new Vec2(this.x + pt.x, this.y + pt.y) } sub(pt) { return new Vec2(this.x - pt.x, this.y - pt.y) } index(size) { return Math.floor(this.x) + Math.floor(this.y) * size } equals(pt) { return this.x === pt.x && this.y === pt.y } distance(pt) { return Math.sqrt((this.x - pt.x) ** 2 + (this.y - pt.y) ** 2) } floor(pt) { return new Vec2(Math.floor(this.x), Math.floor(this.y)) } addX(x) { return new Vec2(this.x + x, this.y) } addY(y) { return new Vec2(this.x, this.y + y) } length() { return this.distance(new Vec2(0, 0)) } normalize() { const length = this.length() return new Vec2(this.x / length, this.y / length) } angle() { return Math.atan2(this.y, this.x) } static lerp(a, b, fract) { return new Vec2(lerp(a.x, b.x, fract), lerp(a.y, b.y, fract)) } } class LineSegment { constructor(a, b, source) { this.a = a this.b = b this.source = source } intersection(seg) { const int = segment_intersect2([this.a.x, this.a.y], [this.b.x, this.b.y], [seg.a.x, seg.a.y], [seg.b.x, seg.b.y]) if (int) { return new Vec2(int[0], int[1]) } else { return false } } length() { return this.a.distance(this.b) } } // vec2 functions const equal2=(a,b)=>0.001>dist_sqr2(a,b); const scale2=(a,b)=>[a[0]*b,a[1]*b]; const add2=(a,b)=>[a[0]+b[0],a[1]+b[1]]; const sub2=(a,b)=>[a[0]-b[0],a[1]-b[1]]; const dot2=(a,b)=>a[0]*b[0]+a[1]*b[1]; const dist_sqr2=(a,b)=>(a[0]-b[0])*(a[0]-b[0])+(a[1]-b[1])*(a[1]-b[1]); const segment_intersect2=(a,b,d,c)=>{ const e=(c[1]-d[1])*(b[0]-a[0])-(c[0]-d[0])*(b[1]-a[1]); if(0==e)return false; c=((c[0]-d[0])*(a[1]-d[1])-(c[1]-d[1])*(a[0]-d[0]))/e; d=((b[0]-a[0])*(a[1]-d[1])-(b[1]-a[1])*(a[0]-d[0]))/e; return 0<=c&&1>=c&&0<=d&&1>=d?[a[0]+c*(b[0]-a[0]),a[1]+c*(b[1]-a[1])]:false; } const fronts = [] const lineSegments = [] const newFrontCounts = [1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2] const newFrontCountsOnHit = [0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2] function init(count) { for (let i = 0; i < count; i++) { const start = new Vec2(1, 0).rotate(Random.random() * Math.PI * 2).multn(Random.random() * 45) // const angle = map(Random.random(), 0, 1, 0, Math.PI * 2) const angle = map(Random.random(), 0, 1, Math.PI / 4, Math.PI * 3 / 4) const speed = map(Random.random(), 0, 1, 0.5, 1) const dir = new Vec2(1, 0).rotate(angle).multn(speed) fronts.push(new Front(start, dir)) } } function step(dt) { const lineSegmentsCount = lineSegments.length steppingFronts().forEach(front => front.step(dt)) return lineSegments.slice(lineSegmentsCount) } function steppingFronts() { return fronts.filter(front => front.stepping) } class Front { constructor(start, dir, parent, minDistForSplit) { this.pt = this.start = start this.dir = dir this.parent = parent this.minDistForSplit = minDistForSplit || 8 this.stepping = true this.distSinceSplit = 0 } step(dt) { const pt = this.pt.add(this.dir.multn(dt)) const line = new LineSegment(this.pt, pt, this) let minLength = Infinity let minInt = null let intLine = null for (let i = 0; i < lineSegments.length; i++) { const test = lineSegments[i] if (test.source === this) continue if (test.source === this.parent) continue const int = line.intersection(test) if (int && int.distance(this.start) > 0.01) { const len = int.distance(this.pt) if (len < minLength) { minLength = len minInt = int intLine = test } } } if (minInt) { lineSegments.push(new LineSegment(this.pt, minInt, this)) this.stepping = false const newFronts = Random.random() < 0.5//randomFrom(newFrontCountsOnHit) for (let i = 0; i < newFronts; i++) { const newSpeed = clamp(this.dir.length() * map(Random.random(), 0, 1, 0.5, 1.5), 0.5, 1) // const offsAngle = map(Random.random(), 0, 1, Math.PI / 2, 3 * Math.PI / 2) // const offsAngle = Math.PI / 2 * (Random.random() < 0.5 ? 1 : -1) const offsAngle = randomFrom([Math.PI / 3, 2 / 3 * Math.PI]) * (Random.random() < 0.5 ? 1 : -1) const newDir = this.dir.rotate(offsAngle).normalize().multn(newSpeed) fronts.push(new Front(minInt, newDir, this)) } } else { lineSegments.push(line) this.distSinceSplit += line.length() const split = this.distSinceSplit > this.minDistForSplit && Random.random() < 0.2 //map(Random.random(), 0, 1, 1, 5) < this.start.distance(pt) if (split) { this.distSinceSplit = 0 this.stepping = Random.random() < 0.8 const newFronts = Math.max(randomFrom(newFrontCounts), this.stepping ? 0 : 1) for (let i = 0; i < newFronts; i++) { const newSpeed = clamp(this.dir.length() * map(Random.random(), 0, 1, 0.5, 1.5), 0.5, 1) // const offsAngle = map(Random.random(), 0, 1, Math.PI / 4, Math.PI * 3 / 4) * (Random.random() < 0.5 ? 1 : -1) // const offsAngle = Math.PI / 2 * (Random.random() < 0.5 ? 1 : -1) const offsAngle = randomFrom([Math.PI / 3, 2 / 3 * Math.PI]) * (Random.random() < 0.5 ? 1 : -1) const newDir = this.dir.rotate(offsAngle).normalize().multn(newSpeed) const minDistForSplit = Math.abs(this.dir.x) > Math.abs(this.dir.y) ? 24 : 8 // const minDistForSplit = Random.random() < 0.5 ? 40 : 4 fronts.push(new Front(pt, newDir, this, minDistForSplit)) } } if (!isWithin(pt.x, -90, 90) || !isWithin(pt.y, -90, 90)) { this.stepping = false } this.pt = pt } } } let lineSegmentsDrawn = [] // polygon functions function LineSegment2(p1, p2) { this.p1 = p1; this.p2 = p2; } LineSegment2.prototype.unique = function() { for (let i=0, l=lineSegmentsDrawn.length; i<l; i++) { const ls = lineSegmentsDrawn[i]; if ( (equal2(this.p1, ls.p1) && equal2(this.p2, ls.p2)) || (equal2(this.p1, ls.p2) && equal2(this.p2, ls.p1)) ){ return false; } } lineSegmentsDrawn.push(this); return true; } function Polygon() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d line to draw: array of linesegments } Polygon.prototype.clone = function() { const p = new Polygon() p.cp = [...this.cp] p.dp = [...this.dp] return p } Polygon.prototype.addOutline = function(s=0) { for (let i=s, l=this.cp.length; i<l; i++) { this.dp.push(new LineSegment2(this.cp[i], this.cp[(i+1)%l])); } } Polygon.prototype.createPoly = function(x,y,c,r,a) { this.cp = []; for (let i=0; i<c; i++) { this.cp.push( [x + Math.sin(i*Math.PI*2/c+a) * r, y + Math.cos(i*Math.PI*2/c+a) * r] ); } } Polygon.prototype.addHatching = function(a,d) { // todo, create a tight bounding polygon, for now fill screen const tp = new Polygon(); tp.createPoly(0,0,4,200,Math.PI*.5); const dx = Math.sin(a)*d, dy = Math.cos(a)*d; const cx = Math.sin(a)*200, cy = Math.cos(a)*200; for (let i = .5; i<150/d; i++) { tp.dp.push(new LineSegment2([dx*i+cy,dy*i-cx], [dx*i-cy,dy*i+cx])); tp.dp.push(new LineSegment2([-dx*i+cy,-dy*i-cx], [-dx*i-cy,-dy*i+cx])); } tp.boolean(this, false); this.dp = this.dp.concat(tp.dp); } Polygon.prototype.draw = function(t) { if (this.dp.length ==0) { return; } for (let i=0, l=this.dp.length; i<l; i++) { const d = this.dp[i]; if (d.unique()) { if (!equal2(d.p1, t.pos())) { t.penup(); t.goto(d.p1); t.pendown(); } t.goto(d.p2); } } } Polygon.prototype.inside = function(p) { // find number of intersections from p to far away - if even you're outside const p1 = [0, -1000]; let int = 0; for (let i=0, l=this.cp.length; i<l; i++) { if (segment_intersect2(p, p1, this.cp[i], this.cp[(i+1)%l])) { int ++; } } return int & 1; } Polygon.prototype.boolean = function(p, diff = true) { // very naive polygon diff algorithm - made this up myself const ndp = []; for (let i=0, l=this.dp.length; i<l; i++) { const ls = this.dp[i]; // find all intersections with clip path const int = []; for (let j=0, cl=p.cp.length; j<cl; j++) { const pint = segment_intersect2(ls.p1,ls.p2,p.cp[j],p.cp[(j+1)%cl]); if (pint) { int.push(pint); } } if (int.length == 0) { // 0 intersections, inside or outside? if (diff != p.inside(ls.p1)) { ndp.push(ls); } } else { int.push(ls.p1); int.push(ls.p2); // order intersection points on line ls.p1 to ls.p2 const cmp = sub2(ls.p2,ls.p1); int.sort((a,b) => dot2(sub2(a,ls.p1),cmp)-dot2(sub2(b,ls.p1),cmp)); for (let j=0; j<int.length-1; j++) { if (!equal2(int[j], int[j+1]) && diff != p.inside(scale2(add2(int[j],int[j+1]),.5))) { ndp.push(new LineSegment2(int[j], int[j+1])); } } } } this.dp = ndp; return this.dp.length > 0; } function walk(i) { const dt = 1 const newLineSegments = step(dt) for (let i = 0; i < newLineSegments.length; i++) { const line = newLineSegments[i] turtle.penup() turtle.goto(line.a.x, line.a.y) turtle.pendown() turtle.goto(line.b.x, line.b.y) } const finished = steppingFronts().length === 0 if (finished) { for (let i = 0; i < 30; i++) { const start = new Vec2(Random.random() * 180 - 90, Random.random() * 180 - 90) console.log('i', i, start.x, start.y) const lines = new Set() for (let angle = 0; angle < Math.PI * 2; angle += 0.1) { const ray = new LineSegment(start, new Vec2(1, 0).rotate(angle).multn(200).add(start)) let minLength = Infinity let minInt = null let intLine = null for (let j = 0; j < lineSegments.length; j++) { const test = lineSegments[j] const int = ray.intersection(test) if (int) { const len = int.distance(start) if (len < minLength) { minLength = len minInt = int intLine = test } } } if (!intLine) { break } lines.add(intLine) } const poly = new Polygon() lines.forEach((line, ind) => { turtle.penup() turtle.goto(line.a.x, line.a.y) turtle.pendown() turtle.goto(line.b.x, line.b.y) const a = ((line.b.angle() - line.a.angle()) + Math.PI * 2) % (Math.PI * 2) if (a > Math.PI) { poly.cp.push([line.b.x, line.b.y], [line.a.x, line.a.y]) } else { poly.cp.push([line.a.x, line.a.y], [line.b.x, line.b.y]) } }) poly.addHatching(Math.PI / 3 * randomFrom([1, 2]), 1) poly.draw(turtle) } } return !finished } const lib = {} ;(function(lib) { /* I've wrapped Makoto Matsumoto and Takuji Nishimura's code in a namespace so it's better encapsulated. Now you can have multiple random number generators and they won't stomp all over eachother's state. If you want to use this as a substitute for Math.random(), use the random() method like so: var m = new MersenneTwister(); var randomNumber = m.random(); You can also call the other genrand_{foo}() methods on the instance. If you want to use a specific seed in order to get a repeatable random sequence, pass an integer into the constructor: var m = new MersenneTwister(123); and that will always produce the same random sequence. Sean McCullough (banksean@gmail.com) */ /* A C-program for MT19937, with initialization improved 2002/1/26. Coded by Takuji Nishimura and Makoto Matsumoto. Before using, initialize the state by using init_genrand(seed) or init_by_array(init_key, key_length). Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The names of its contributors may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Any feedback is very welcome. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space) */ var MersenneTwister = function(seed) { if (seed == undefined) { seed = new Date().getTime(); } /* Period parameters */ this.N = 624; this.M = 397; this.MATRIX_A = 0x9908b0df; /* constant vector a */ this.UPPER_MASK = 0x80000000; /* most significant w-r bits */ this.LOWER_MASK = 0x7fffffff; /* least significant r bits */ this.mt = new Array(this.N); /* the array for the state vector */ this.mti=this.N+1; /* mti==N+1 means mt[N] is not initialized */ this.init_genrand(seed); } /* initializes mt[N] with a seed */ MersenneTwister.prototype.init_genrand = function(s) { this.mt[0] = s >>> 0; for (this.mti=1; this.mti<this.N; this.mti++) { var s = this.mt[this.mti-1] ^ (this.mt[this.mti-1] >>> 30); this.mt[this.mti] = (((((s & 0xffff0000) >>> 16) * 1812433253) << 16) + (s & 0x0000ffff) * 1812433253) + this.mti; /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ /* In the previous versions, MSBs of the seed affect */ /* only MSBs of the array mt[]. */ /* 2002/01/09 modified by Makoto Matsumoto */ this.mt[this.mti] >>>= 0; /* for >32 bit machines */ } } /* initialize by an array with array-length */ /* init_key is the array for initializing keys */ /* key_length is its length */ /* slight change for C++, 2004/2/26 */ MersenneTwister.prototype.init_by_array = function(init_key, key_length) { var i, j, k; this.init_genrand(19650218); i=1; j=0; k = (this.N>key_length ? this.N : key_length); for (; k; k--) { var s = this.mt[i-1] ^ (this.mt[i-1] >>> 30) this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1664525) << 16) + ((s & 0x0000ffff) * 1664525))) + init_key[j] + j; /* non linear */ this.mt[i] >>>= 0; /* for WORDSIZE > 32 machines */ i++; j++; if (i>=this.N) { this.mt[0] = this.mt[this.N-1]; i=1; } if (j>=key_length) j=0; } for (k=this.N-1; k; k--) { var s = this.mt[i-1] ^ (this.mt[i-1] >>> 30); this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1566083941) << 16) + (s & 0x0000ffff) * 1566083941)) - i; /* non linear */ this.mt[i] >>>= 0; /* for WORDSIZE > 32 machines */ i++; if (i>=this.N) { this.mt[0] = this.mt[this.N-1]; i=1; } } this.mt[0] = 0x80000000; /* MSB is 1; assuring non-zero initial array */ } /* generates a random number on [0,0xffffffff]-interval */ MersenneTwister.prototype.genrand_int32 = function() { var y; var mag01 = new Array(0x0, this.MATRIX_A); /* mag01[x] = x * MATRIX_A for x=0,1 */ if (this.mti >= this.N) { /* generate N words at one time */ var kk; if (this.mti == this.N+1) /* if init_genrand() has not been called, */ this.init_genrand(5489); /* a default initial seed is used */ for (kk=0;kk<this.N-this.M;kk++) { y = (this.mt[kk]&this.UPPER_MASK)|(this.mt[kk+1]&this.LOWER_MASK); this.mt[kk] = this.mt[kk+this.M] ^ (y >>> 1) ^ mag01[y & 0x1]; } for (;kk<this.N-1;kk++) { y = (this.mt[kk]&this.UPPER_MASK)|(this.mt[kk+1]&this.LOWER_MASK); this.mt[kk] = this.mt[kk+(this.M-this.N)] ^ (y >>> 1) ^ mag01[y & 0x1]; } y = (this.mt[this.N-1]&this.UPPER_MASK)|(this.mt[0]&this.LOWER_MASK); this.mt[this.N-1] = this.mt[this.M-1] ^ (y >>> 1) ^ mag01[y & 0x1]; this.mti = 0; } y = this.mt[this.mti++]; /* Tempering */ y ^= (y >>> 11); y ^= (y << 7) & 0x9d2c5680; y ^= (y << 15) & 0xefc60000; y ^= (y >>> 18); return y >>> 0; } /* generates a random number on [0,0x7fffffff]-interval */ MersenneTwister.prototype.genrand_int31 = function() { return (this.genrand_int32()>>>1); } /* generates a random number on [0,1]-real-interval */ MersenneTwister.prototype.genrand_real1 = function() { return this.genrand_int32()*(1.0/4294967295.0); /* divided by 2^32-1 */ } /* generates a random number on [0,1)-real-interval */ MersenneTwister.prototype.random = function() { return this.genrand_int32()*(1.0/4294967296.0); /* divided by 2^32 */ } /* generates a random number on (0,1)-real-interval */ MersenneTwister.prototype.genrand_real3 = function() { return (this.genrand_int32() + 0.5)*(1.0/4294967296.0); /* divided by 2^32 */ } /* generates a random number on [0,1) with 53-bit resolution*/ MersenneTwister.prototype.genrand_res53 = function() { var a=this.genrand_int32()>>>5, b=this.genrand_int32()>>>6; return(a*67108864.0+b)*(1.0/9007199254740992.0); } lib.MersenneTwister = MersenneTwister /* These real versions are due to Isaku Wada, 2002/01/09 added */ })(lib) const { MersenneTwister } = lib const Random = new MersenneTwister(randomSeed) init(1)