Forked from "Möbius Ladder and Curl" by reinder. changes getLighting() to test for cast shadows.
Log in to post a comment.
// Forked from "Möbius Ladder and Curl" by reinder // https://turtletoy.net/turtle/6ce99160fe // Möbius Ladder and Curl. Created by Reinder Nijhoff 2021 - @reindernijhoff // // https://turtletoy.net/turtle/6ce99160fe // Forked from "Möbius Ladder" by llemarie // https://turtletoy.net/turtle/b141d327fc // LL 2021 Canvas.setpenopacity(.6); const turtle = new Turtle(); turtle.traveled = 0; const radius = 0.7; // min=0.01, max=1, step=0.01 const minRadius = 0.1; // min=0.01, max=1, step=0.01 const maxPathLength = 75; // min=1, max=100, step=0.1 const maxTries = 200; const grid = new PoissonDiscGrid(radius); const scene = 5; // min=0, max=6, step=1 (Sphere,Torus,Sphere+Torus,Knot,Metaballs,Mobius,Box) const MAX_STEPS = 100; const MAX_DIST = 100; const SURF_DIST = .001; function length2(v2) { return Math.sqrt(v2[0]*v2[0] + v2[1]*v2[1]); } function length3(v3) { return Math.sqrt(v3[0]*v3[0] + v3[1]*v3[1] + v3[2]*v3[2]); } function normalize3(v3) { var l = length3(v3); if (l<0.00001) l=1; return [v3[0]/l, v3[1]/l, v3[2]/l]; } function mul2(a2, f) { return [a2[0]*f, a2[1]*f]; } function mul3(a3, f) { return [a3[0]*f, a3[1]*f, a3[2]*f]; } function add3(a3, b3) { return [a3[0]+b3[0], a3[1]+b3[1], a3[2]+b3[2]]; } function sub3(a3, b3) { return [a3[0]-b3[0], a3[1]-b3[1], a3[2]-b3[2]]; } function cross3(a3, b3) { return [ a3[1] * b3[2] - a3[2] * b3[1], a3[2] * b3[0] - a3[0] * b3[2], a3[0] * b3[1] - a3[1] * b3[0] ]; } function fract3(v3) { return [ Math.trunc(v3[0]), Math.trunc(v3[1]), Math.trunc(v3[2]) ]; } function abs3(v3) { return [ Math.abs(v3[0]), Math.abs(v3[1]), Math.abs(v3[2]) ]; } function dot3(a3, b3) { return a3[0] * b3[0] + a3[1] * b3[1] + a3[2] * b3[2]; } function mul_mat2(v2, m22) { return [ v2[0] * m22[0] + v2[1] * m22[1], v2[0] * m22[2] + v2[1] * m22[3] ]; } function clamp(x, min, max) { return Math.min(max, Math.max(min, x)); } function smoothstep(edge0, edge1, x) { x = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0); return x * x * (3 - 2 * x); } function tri3(x3) { return abs3(sub3(fract3(x3), .5)); } function mix(x, y, a) { return x * (1-a) + y * a; } function smin(a, b , s) { var h = clamp( 0.5 + 0.5*(b-a)/s, 0. , 1.); return mix(b, a, h) - h*(1.0-h)*s; } function rotation_mat22(a) { var s = Math.sin(a); var c = Math.cos(a); return [c, -s, s, c]; } function mat2_r2(th) { var a2 = [ Math.sin(1.5707963 + th), Math.sin(th) ]; return [ a2[0], a2[1], -a2[1], a2[0] ]; } function GetRayDir(uv2, p3, l3, z) { var f3 = normalize3(sub3(l3, p3)); var r3 = normalize3(cross3([0,1,0], f3)); var u3 = cross3(f3, r3); var c3 = mul3(f3, z); var i3 = add3(add3(c3, mul3(r3, uv2[0])), mul3(u3, uv2[1])); var d3 = normalize3(i3); return d3; } // Box function sdBox(p3, s3) { p3 = sub3(abs3(p3), s3); var r = Math.min(Math.max(p3[0], Math.max(p3[1], p3[2])), 0); var q3 = [Math.max(p3[0], 0), Math.max(p3[1], 0), Math.max(p3[2], 0)]; q3 = add3(q3, [r,r,r]); return length3(q3); } // Torus function sdTorus(p3, r1, r2) { var cp2 = [ length2([p3[0], p3[2]]) - r1, p3[1] ]; var d = length2(cp2) - r2; return d; } // Knot function sdKnot(p3, r1, r2, twist, split) { var cp2 = [ length2([p3[0], p3[2]]) - r1, p3[1] ]; var a = Math.atan2(p3[2], p3[0]); // polar angle between -pi and pi cp2 = mul_mat2(cp2, rotation_mat22(a * twist)); cp2[1] = Math.abs(cp2[1]) - split; var d = length2(cp2) - r2; return d * .8; } // Sphere function sdSphere(p3, r) { var d = length3(p3) - r; return d; } // Mobius // Adapted from https://www.shadertoy.com/view/XldSDs function sdMobius(q3) { const toroidRadius = 0.8; // The object's disc radius. const polRot = 0.5; // Poloidal rotations. const ringNum = 16; // Number of quantized objects embedded between the rings. var p3 = [...q3]; var a = Math.atan2(p3[2], p3[0]); var xz = [ p3[0], p3[2] ]; var r2 = mat2_r2(a); xz = mul_mat2(xz, r2); p3[0] = xz[0]; p3[2] = xz[1]; p3[0] -= toroidRadius; var xy = [ p3[0], p3[1] ]; r2 = mat2_r2(a*polRot); xy = mul_mat2(xy, r2); p3[0] = xy[0]; p3[1] = xy[1]; p3 = abs3(sub3(abs3(p3), [.25, .25, .25])); var rail = Math.max(Math.max(p3[0], p3[1]) - .07, (Math.max(p3[1]-p3[0], p3[1] + p3[0])*.7071 - .075)); p3 = [...q3]; var ia = Math.floor(ringNum * a / 6.2831853); ia = (ia + .5) / ringNum * 6.2831853; xz = [ p3[0], p3[2] ]; r2 = mat2_r2(ia); xz = mul_mat2(xz, r2); p3[0] = xz[0]; p3[2] = xz[1]; p3[0] -= toroidRadius; xy = [ p3[0], p3[1] ]; r2 = mat2_r2(a*polRot); xy = mul_mat2(xy, r2); p3[0] = xy[0]; p3[1] = xy[1]; p3 = abs3(p3); var ring = Math.max(p3[0], p3[1]); ring = Math.max(Math.max(ring - .275, p3[2] - .03), -(ring - .2)); return smin(ring, rail, .03); } function sdMetaBalls(p3, r, spread) { let d = MAX_DIST; balls = [ [spread * 0.3, spread * 0.5, 0], [0, spread * -0.5, spread * 0.01], [spread * 0.7, 0, 0], [spread * -0.55, 0, 0] ]; for (b in balls) { const q3 = add3(p3, balls[b]); d = smin(d, sdSphere(q3, r), 0.45); } return d; } function map(p3) { let d = MAX_DIST; if (scene == 0 || scene == 2) d = Math.min(d, sdSphere(p3, 0.7)); if (scene == 1 || scene == 2) d = Math.min(d, sdTorus(p3, 0.8, 0.05)); if (scene == 3) d = Math.min(d, sdKnot(p3, 0.7, 0.1, 2.5, .2)); if (scene == 4) d = Math.min(d, sdMetaBalls(p3, 0.23, 0.8)); if (scene == 5) d = Math.min(d, sdMobius(p3)); if (scene == 6) d = Math.min(d, sdBox(p3, [0.5,0.5,0.5])); if (scene == 6) d = smin(d, sdBox(add3(p3, [0.6, 0.6, -0.6]), [0.2,0.2,0.2]), 0.5); return d; } function calcNormal(p3) { const e = 0.1 * SURF_DIST; return normalize3([ map(add3(p3, [e,0,0])) - map(add3(p3, [-e,0,0])), map(add3(p3, [0,e,0])) - map(add3(p3, [0,-e,0])), map(add3(p3, [0,0,e])) - map(add3(p3, [0,0,-e]))]); } function RayMarch(ro3, rd3) { var dO = 0; for (var i = 0; i < MAX_STEPS; i++) { var p3 = add3(ro3, mul3(rd3, dO)); var dS = map(p3); dO += dS; if (dO > MAX_DIST) return MAX_DIST; if (Math.abs(dS)<SURF_DIST) break; } return dO; } function getRay(p2) { // Convert to -1 to 1 const uv2 = [ p2[0] / 100, p2[1] / 100 ]; // Ray origin let ro3 = [0, -0.2, -1.2]; if (scene == 3) ro3 = [ 0, -1, -1 ]; if (scene == 4) ro3 = [ 0, 0, -1 ]; if (scene == 5) ro3 = [ 0, -1, -1.5 ]; if (scene == 6) ro3 = [ -1, -1, -1 ]; let l3 = [ 0, 0.0, 0 ]; if (scene == 2) l3 = [ 0, 0.4, 0 ]; if (scene == 5) l3 = [ 0, 0.4, 0 ]; // Ray direction var rd3 = GetRayDir(uv2, ro3, l3, 1.); return [ro3, rd3]; } // p: 2D point in -100 to 100 range function zFunc(p2) { const [ro3, rd3] = getRay(p2); // Get distance to intersection return RayMarch(ro3, rd3); } const lightDir = [0.9,0,-.436]; const lightDir2 = [-0.9,0,.436]; function getLighting(p2, dist) { const [ro3, rd3] = getRay(p2); const p3 = add3(ro3, mul3(rd3, dist)); if(isNaN(dist) || dist == MAX_DIST) return 0; const n3 = calcNormal(p3); const p4 = add3(p3,mul3(n3,SURF_DIST*2)); const d = RayMarch(p4,lightDir2); //console.log(p2+"\t"+d); if(d>0 && d<MAX_DIST) return 1.0; // return .5*n3[0]+.5; return 0.5*dot3(n3, lightDir)+.5; } function getRadius(p2) { const l = getLighting(p2, zFunc(p2)); return (minRadius * l + radius * (1-l)) / 2; } function curlNoise(x, y) { const eps = 0.1; const dx = (zFunc([x, y + eps]) - zFunc([x, y - eps]))/(2 * eps); const dy = (zFunc([x + eps, y]) - zFunc([x - eps, y]))/(2 * eps); const l = Math.hypot(dx, dy) * 10; return [dx / l, -dy / l]; } function walk(i) { const p = turtle.pos(); const curl = curlNoise(p[0], p[1]); const dest = [p[0]+curl[0], p[1]+curl[1]]; dest[2] = getRadius(dest); if (turtle.traveled < maxPathLength && Math.abs(dest[0]) < 110 && Math.abs(dest[1]) < 110 && grid.insert(dest)) { turtle.goto(dest); turtle.traveled += Math.hypot(curl[0], curl[1]); } else { turtle.traveled = 0; let r, i = 0; do { r =[Math.random()*200-100, Math.random()*200-100]; r[2] = getRadius(r); i ++; } while(!grid.insert(r) && i < maxTries); if (i >= maxTries) { return false; } turtle.jump(r); } return true; } //////////////////////////////////////////////////////////////// // Poisson-Disc utility code. Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/b5510898dc //////////////////////////////////////////////////////////////// function PoissonDiscGrid(radius) { class PoissonDiscGrid { constructor(radius) { this.cellSize = 1/Math.sqrt(2)/radius; this.cells = []; this.queue = []; } insert(p) { const x = p[0]*this.cellSize|0, y=p[1]*this.cellSize|0; for (let xi = x-1; xi<=x+1; xi++) { for (let yi = y-1; yi<=y+1; yi++) { const ps = this.cell(xi,yi); for (let i=0; i<ps.length; i++) { if ((ps[i][0]-p[0])**2 + (ps[i][1]-p[1])**2 < (ps[i][2]+p[2])**2) { return false; } } } } this.queue.push([p, x, y]); if (this.queue.length > 10) { const d = this.queue.shift(); this.cell(d[1], d[2]).push(d[0]); } return true; } cell(x,y) { const c = this.cells; return (c[x]?c[x]:c[x]=[])[y]?c[x][y]:c[x][y]=[]; } } return new PoissonDiscGrid(radius); }