...were walking down the street. One said to the other: "Read this article".
chalkdustmagazine.co…truchet-met-chladni/
Log in to post a comment.
const edgeSize = 4; //min=2 max=30 step=1 const orientation = 20; //min=0 max=360 step=1 const rings = 19; //min=0 max=30 step=1 const vBorder = 0; //min=0 max=100 step=1 const hBorder = 42; //min=0 max=100 step=1 // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(.7); // Global code will be evaluated once. const turtle = new Turtle(); const polygons = new Polygons(); turtle.radians(); const show = 6; const loopMode = 0; const drawEdges = 0; const clockwise = 0; const rotation = (orientation / 180) * Math.PI; const clockwiseIndex = clockwise == 1; turtle.seth(rotation); class HexGrid { innerRVectors = []; // list of downright, upright, up, upleft, downleft, down vectors offsetModifiers = [ [ 1, (column) => column % 2 == 0? 0: 1 ], // downright [ 1, (column) => column % 2 == 0? -1: 0 ], //upright [ 0, (column) => -1 ], //up [-1, (column) => column % 2 == 0? -1: 0 ], //upleft [-1, (column) => column % 2 == 0? 0: 1 ], //downleft [ 0, (column) => 1 ] //down ]; cubeModifiers = [[1,0,-1],[1,-1, 0],[0,-1,1],[-1,0,1],[-1,1,0],[0,1,-1]]; iterator = null; currentOffset = [0,0]; currentIndex = 0; currentCube = [0,0,0]; currentDouble = [0,0]; currentRing = 0; constructor(edgeSize, spiral = false, rotation = 0, clockwise = false) { this.edgeSize = edgeSize; this.innerSize = Math.sqrt(.75) * edgeSize; this.spiral = spiral; this.rotation = rotation; this.clockwise = clockwise } setInnerRVectors() { for(let i = 1; i <= 6; i++) { this.innerRVectors.push(trans2(rot2(((Math.PI / 3) * i * (this.clockwise? -1: 1)) - this.rotation), [0, this.innerSize * 2])); } } updateCoordination(index) { this.currentOffset = add2(this.currentOffset, [this.offsetModifiers[index][0], this.offsetModifiers[index][1](this.currentOffset[0])]); this.currentDouble = [this.currentOffset[0], this.currentOffset[1] + this.currentOffset[1] + (this.currentOffset[0] % 2 == 0? 0:1)]; this.currentCube = add3(this.currentCube, this.cubeModifiers[index]); this.currentIndex++; } *spiralCellPositions() { let position = turtle.pos(); yield this.yieldCell(position); while(this.currentRing++ !== false) { position = add2(position, this.innerRVectors[5]); this.updateCoordination(5); yield this.yieldCell(position); for(let j = 0; j < 6; j++) { for(let i = 0; i < this.currentRing - (j == 0? 1: 0); i++) { position = add2(position, this.innerRVectors[j]); this.updateCoordination(j); yield this.yieldCell(position); } } } } *ringCellPositions() { let position = turtle.pos(); yield this.yieldCell(position); while(this.currentRing++ !== false) { let rPosition = add2(position, scale2(this.innerRVectors[5], this.currentRing)); this.currentOffset = [0, this.currentRing]; this.currentDouble = [this.currentOffset[0], this.currentOffset[1] + this.currentOffset[1] + (this.currentOffset[0] % 2 == 0? 0:1)]; this.currentCube = [0, this.currentRing, -this.currentRing]; this.currentIndex++; yield this.yieldCell(rPosition); for(let i = 1; i <= 6; i++) { for(let n = 0; n < (i == 6? this.currentRing - 1: this.currentRing); n++) { rPosition = add2(rPosition, this.innerRVectors[i % 6]); this.updateCoordination(i % 6); yield this.yieldCell(rPosition); } } } } yieldCell(position) { return new HexCell(this.edgeSize, position, this.currentIndex, this.currentOffset, this.currentCube, this.currentDouble, this.currentRing, this.rotation); } nextCell() { if(this.iterator == null) { this.setInnerRVectors(); this.iterator = this.spiral? this.spiralCellPositions(): this.ringCellPositions(); this.index = 0; } return this.iterator.next().value; } } class HexCell { constructor(size, position, index, offset, cube, double, ring, rotation) { this.position = position; this.index = index; this.offset = offset; this.cube = cube; this.double = double; this.ring = ring; this.size = size; this.rotation = rotation; } getBorderPoints(turtle, borderSize = null) { let isDown = turtle.isdown(); turtle.up(); if(borderSize == null) { borderSize = this.size; } turtle.forward(borderSize); turtle.right(turtle._fullCircle / 3); let points = []; for(let i = 0; i < 6; i++) { points.push(turtle.pos()); turtle.forward(borderSize); turtle.right(turtle._fullCircle / 6); } turtle.left(turtle._fullCircle / 3); turtle.forward(-borderSize); if(isDown) { turtle.down(); } return points; } drawBorder(turtle, borderSize = null) { let points = this.getBorderPoints(turtle, borderSize); turtle.jump(points[0]); for(let i = 1; i < points.length; i++) { turtle.goto(points[i]); } turtle.goto(points[0]); turtle.jump(this.position); } decorate(turtle) { if( Math.abs(this.position[1]) - (100 - hBorder) - this.size > 0 || Math.abs(this.position[0]) - (100 - vBorder) - this.size > 0) { return; } let x = this.position[0]; let y = this.position[1]; let scale = this.size; let lineWidth = .28; let rotation = this.rotation; let t = turtle; const h0 = Math.sqrt(3)/2; const h1 = 1/2; const poly = new Polygons(); // 2 transform functions: translate-scale (for background hatching), and rotate-translate-scale const ts = p => [(scale*p[0])+x,(scale*p[1])+y]; const rts = (p, a) => ts([Math.cos(a)*p[0]+Math.sin(a)*p[1], Math.cos(a)*p[1]-Math.sin(a)*p[0]]); // vec2 helper functions const add = (a, b) => [a[0]+b[0], a[1]+b[1]]; const sub = (a, b) => [a[0]-b[0], a[1]-b[1]]; const scl = (a, b) => [a[0]*b, a[1]*b]; const rm = [Math.cos(-rotation), -Math.sin(-rotation), Math.sin(-rotation), Math.cos(-rotation)]; const rotate = (a) => [rm[0]*a[0]+rm[2]*a[1], rm[1]*a[0]+rm[3]*a[1]]; // 2 methods to create lines in a tile const circle = (c, r, s, e, fill) => { // circle around c, from angle s to e with radius r const p = poly.create(), c0 =[ts(c)], f=10; for (let i=0; i<=f; i++) { c0.push(ts(add(c, [Math.cos(s+(e-s)*i/f)*r, Math.sin(s+(e-s)*i/f)*r]))); } p.addPoints(...c0); if(fill) { p.addHatching(0, .15); } return p; } const polygon = (points, fill) => { const p = poly.create(); p.addPoints(...points); if(fill) { p.addHatching(0, .15); } return p; } // six corners of hexagon const c = []; for (let i=0; i<6; i++) { c.push([Math.cos((i*Math.PI/3) + rotation), Math.sin((i*Math.PI/3) + rotation)]); } // generate lines in tile const l = [];//, tileType = (Math.random()*5)|0; // 5 different tile types let tileType = 0; if(Math.random() < .7) { tileType = 3 + ((Math.random() * 2)|0); } else { tileType = ((Math.random() * 3)|0) } switch (tileType) { case 0: l.push(circle(c[3], h1, -Math.PI/3 + rotation, Math.PI/3 + rotation)); l.push(circle(c[0], h1, Math.PI-Math.PI/3 + rotation, Math.PI+Math.PI/3 + rotation, true)); l.push(polygon([[0,-h0], [0, h0], [-h1, h0], [-2*h1, 0], [-h1, -h0]].map(p => rts(p, 0 - rotation)), true)) l.push(polygon(c.map(p => rts(p, 0)))) break; case 1: l.push(circle(c[1], h1, Math.PI + rotation, 5*Math.PI/3 + rotation)); l.push(circle(c[4], h1, rotation, 2*Math.PI/3 + rotation, true)); l.push(polygon([[0,-h0], [0, h0], [-h1, h0], [-2*h1, 0], [-h1, -h0]].map(p => rts(p, Math.PI / 1.5 - rotation)), true)) l.push(polygon(c.map(p => rts(p, 0)))) break; case 2: l.push(circle(c[5], h1, Math.PI + rotation, Math.PI/3 + rotation)); l.push(circle(c[2], h1, rotation, -2*Math.PI/3 + rotation, true)); l.push(polygon([[0,-h0], [0, h0], [-h1, h0], [-2*h1, 0], [-h1, -h0]].map(p => rts(p, Math.PI / .75 - rotation)), true)) l.push(polygon(c.map(p => rts(p, 0)))) break; case 3: l.push(circle(c[0], h1, Math.PI-Math.PI/3 + rotation, Math.PI+Math.PI/3 + rotation, true)); // 3 arcs #1 l.push(circle(c[2], h1, -2*Math.PI/3 + rotation, 0 + rotation, true)); l.push(circle(c[4], h1, 0 + rotation, 2*Math.PI/3 + rotation, true)); l.push(polygon(c.map(p => ts(p)))) break; case 4: l.push(circle(c[1], h1, Math.PI + rotation, Math.PI+Math.PI/1.5 + rotation)); // 3 arcs #1 l.push(circle(c[3], h1, -Math.PI/3 + rotation, Math.PI/3 + rotation)); l.push(circle(c[5], h1, Math.PI/3 + rotation, 3*Math.PI/3 + rotation)); l.push(polygon(c.map(p => ts(p)), true)) break; } // shuffle lines and draw // l.sort((a,b) => Math.random()-.5); l.map(p => poly.draw(t, p)); } } let hg = new HexGrid(edgeSize, loopMode === 0, rotation, clockwiseIndex); // The walk function will be called until it returns false. function walk(i) { let cell = hg.nextCell(); turtle.jump(cell.position); cell.decorate(turtle); return i < (nthTriangular(rings) * 6); } function nthTriangular(n) { return ((n * n) + n) / 2; } // // Vector math // function rot2(a) { return [Math.cos(a), -Math.sin(a), Math.sin(a), Math.cos(a)]; } function trans2(m, a) { return [m[0]*a[0]+m[2]*a[1], m[1]*a[0]+m[3]*a[1]]; } function scale2(a,b) { return [a[0]*b,a[1]*b]; } function add2(a,b) { return [a[0]+b[0],a[1]+b[1]]; } function add3(a,b) { return [a[0]+b[0],a[1]+b[1],a[2]+b[2]]; } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // (Polygon binning by Lionel Lemarie 2021) // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons(){const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{constructor(){this.cp=[],this.dp=[],this.aabb=[]}addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]}addSegments(...t){t.forEach(t=>this.dp.push(t))}addOutline(){for(let t=0,s=this.cp.length;t<s;t++)this.dp.push(this.cp[t],this.cp[(t+1)%s])}draw(t){for(let s=0,e=this.dp.length;s<e;s+=2)t.jump(this.dp[s]),t.goto(this.dp[s+1])}addHatching(t,s){const e=new n;e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t);for(let t=.5;t<150/s;t++)e.dp.push([h*t+i,o*t-a],[h*t-i,o*t+a]),e.dp.push([-h*t+i,-o*t-a],[-h*t-i,-o*t+a]);e.boolean(this,!1),this.dp=[...this.dp,...e.dp]}inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s}boolean(t,s=!0){const e=[];for(let n=0,h=this.dp.length;n<h;n+=2){const h=this.dp[n],o=this.dp[n+1],a=[];for(let s=0,e=t.cp.length;s<e;s++){const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]);!1!==n&&a.push(n)}if(0===a.length)s===!t.inside(h)&&e.push(h,o);else{a.push(h,o);const n=o[0]-h[0],i=o[1]-h[1];a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i);for(let n=0;n<a.length-1;n++)(a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001&&s===!t.inside([(a[n][0]+a[n+1][0])/2,(a[n][1]+a[n+1][1])/2])&&e.push(a[n],a[n+1])}}return(this.dp=e).length>0}segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]}};return{list:()=>t,create:()=>new n,draw:(n,h,o=!0)=>{reducedPolygonList=function(n){const h={},o=200/s;for(var a=0;a<s;a++){const c=a*o-100,r=[0,c,200,c+o];if(!(n[3]<r[1]||n[1]>r[3]))for(var i=0;i<s;i++){const c=i*o-100;r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{const e=t[s];n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||(h[s]=1)})}}return Array.from(Object.keys(h),s=>t[s])}(h.aabb);for(let t=0;t<reducedPolygonList.length&&h.boolean(reducedPolygonList[t]);t++);h.draw(n),o&&function(n){t.push(n);const h=t.length-1,o=200/s;e.forEach((t,e)=>{const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o];c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h)})}(h)}}}