a first pass, plenty more ideas to play with here
Log in to post a comment.
// much cleanup necessary; fix alignments of curves on grid // polygon code pulled from: https://turtletoy.net/turtle/789cce3829 // core truchet code pulled from: https://turtletoy.net/turtle/1dc2d96bc9 const maxOffset = 0.25 const cpFactor = 1 / 3 const angle = (3 / 8) * (Math.PI * 2) const dist = 1 const drawCurves = true const crossHatch = true class Vec2 { constructor(x, y) { this.x = x this.y = y } rotate(angle) { return new Vec2( this.x * Math.cos(angle) - this.y * Math.sin(angle), this.x * Math.sin(angle) + this.y * Math.cos(angle) ) } multn(n) { return new Vec2(this.x * n, this.y * n) } add(pt) { return new Vec2(this.x + pt.x, this.y + pt.y) } sub(pt) { return new Vec2(this.x - pt.x, this.y - pt.y) } index(size) { return Math.floor(this.x) + Math.floor(this.y) * size } equals(pt) { return this.x === pt.x && this.y === pt.y } distance(pt) { return Math.sqrt((this.x - pt.x) ** 2 + (this.y - pt.y) ** 2) } floor(pt) { return new Vec2(Math.floor(this.x), Math.floor(this.y)) } addX(x) { return new Vec2(this.x + x, this.y) } addY(y) { return new Vec2(this.x, this.y + y) } static lerp(a, b, fract) { return new Vec2(lerp(a.x, b.x, fract), lerp(a.y, b.y, fract)) } } // class LineSegment { // constructor(a, b) { // this.a = a // this.b = b // } // } Canvas.setpenopacity(1); const turtle = new Turtle(); turtle.penup(); turtle.goto(-50,-20); turtle.pendown(); const size = 20 const tileIndexes = [...Array(size * size)].map((v, i) => i) const points = [[0, 0], [10, 0], [10, 10], [0, 10]].map(([x, y]) => new Vec2(x, y)); const order1 = [0, 1, 2, 3] const order2 = [1, 0, 3, 2] function walk(i) { for (let j = 0; j < 10 && tileIndexes.length > 0; j++) { const listIndex = Math.floor(Math.random() * tileIndexes.length) const tileIndex = tileIndexes[listIndex] tileIndexes.splice(listIndex, 1) const y = Math.floor(tileIndex / size) - size / 2 const x = (tileIndex % size) - size / 2 const p2 = points.map(pt => pt.add(new Vec2(10 * x, 10 * y))) const flip = Math.random() < 0.5 const order = flip ? order1 : order2 const p3 = reorder(p2, order) drawTruch(p3, 0, x, y, flip) } return tileIndexes.length > 0 } function reorder(p, order) { const ps = [] order.forEach(i => ps.push(p[i])) return ps } function drawTruch(pi, r, x, y, flip) { var i0=Math.floor(0.0+r)%4; var i1=Math.floor(1.0+r)%4; var i2=Math.floor(3.0+r)%4; var i3=Math.floor(2.0+r)%4; let tl_dark = !!(((Math.abs(x) % 2) + ((Math.abs(y) + 1) % 2) + (flip ? 0 : 1)) % 2) let t = 0.5 + map(x, -10, 9, -maxOffset, maxOffset) * (tl_dark ? 1 : -1) let tl_s = Vec2.lerp(pi[0], pi[1], t) let tl_e = Vec2.lerp(pi[0], pi[3], t) let tl_a = tl_s.addY((pi[3].y - pi[0].y) * t * cpFactor) let tl_b = tl_e.addX((pi[1].x - pi[0].x) * t * cpFactor) // drawCurve([tl_s, tl_a, tl_b, tl_e]) let tl = pi[0] let tr = pi[1] let br_s = Vec2.lerp(pi[2], pi[3], t) let br_e = Vec2.lerp(pi[2], pi[1], t) let br_a = br_s.addY((pi[1].y - pi[2].y) * t * cpFactor) let br_b = br_e.addX((pi[3].x - pi[2].x) * t * cpFactor) // drawCurve([br_s, br_a, br_b, br_e]) let br = pi[2] let bl = pi[3] if (tl_dark) { const tl_curve = bezierCurve([tl_e, tl_b, tl_a, tl_s]) const br_curve = bezierCurve([br_e, br_b, br_a, br_s]) let poly = new Polygon() poly.cp = [ ...tl_curve, tr, ...br_curve, bl ].map(pt => [pt.x, pt.y]) hatch(poly) if (drawCurves) { addOutline(poly, tl_curve) addOutline(poly, br_curve) } poly.draw(turtle) } else { const tl_curve = bezierCurve([tl_s, tl_a, tl_b, tl_e]) const br_curve = bezierCurve([br_s, br_a, br_b, br_e]) let poly = new Polygon() poly.cp = [ tl, ...tl_curve, ].map(pt => [pt.x, pt.y]) hatch(poly) if (drawCurves) { addOutline(poly, tl_curve) } poly.draw(turtle) poly = new Polygon() poly.cp = [ br, ...br_curve, ].map(pt => [pt.x, pt.y]) hatch(poly) if (drawCurves) { addOutline(poly, br_curve) } poly.draw(turtle) } } let hatching function setupHatching() { let a = angle const d = dist const tp = new Polygon() tp.createPoly(0,0,4,200,Math.PI*.5); { const dx = Math.sin(a)*d, dy = Math.cos(a)*d; const cx = Math.sin(a)*200, cy = Math.cos(a)*200; for (let i = .5; i<150/d; i++) { tp.dp.push(new LineSegment([dx*i+cy,dy*i-cx], [dx*i-cy,dy*i+cx])); tp.dp.push(new LineSegment([-dx*i+cy,-dy*i-cx], [-dx*i-cy,-dy*i+cx])); } } if (crossHatch) { a += Math.PI / 2 const dx = Math.sin(a)*d, dy = Math.cos(a)*d; const cx = Math.sin(a)*200, cy = Math.cos(a)*200; for (let i = .5; i<150/d; i++) { tp.dp.push(new LineSegment([dx*i+cy,dy*i-cx], [dx*i-cy,dy*i+cx])); tp.dp.push(new LineSegment([-dx*i+cy,-dy*i-cx], [-dx*i-cy,-dy*i+cx])); } } hatching = tp } function hatch(poly) { const h = hatching.clone() h.boolean(poly, false) poly.dp = poly.dp.concat(h.dp) } function bezierCurve(p) { const cp = [p[0]] for (var i = 1; i <= 6; i++) { cp.push(bezierCurvePos(p, i / 6)) } return cp } function drawCurve(p) { const cp = [p[0]] for (var i = 1; i <= 6; i++) { cp.push(bezierCurvePos(p, i / 6)) } const dp = addOutline(cp) drawLines(dp) } // cubic bezier curve in 2 dimensions // equivalent to the function above, just in a more intuitive form function bezierCurvePos(p, t) { // combination of 2 quadric beziers var q=[]; var r=[]; for(var i=0;i<3;i++) q.push(Vec2.lerp(p[i],p[i+1],t)) for(var i=0;i<2;i++) r.push(Vec2.lerp(q[i],q[i+1],t)) return Vec2.lerp(r[0],r[1],t) } function addOutline(poly, p) { for (let i = 0, l = p.length; i < l - 1; i++) { poly.dp.push(new LineSegment([p[i].x, p[i].y], [p[i + 1].x, p[i + 1].y])) } } const inp = 0 function drawLines(p) { if (p.length === 0) { return } for (let i = 0, l = p.length; i < l; i++) { const d = p[i] const last = turtle.pos() if (!d.a.equals(new Vec2(...last))) { turtle.penup() turtle.goto([d.a.x + inp * (Math.random() - 0.5), d.a.y + inp * (Math.random() - 0.5)]) turtle.pendown() } turtle.goto([d.b.x + inp * (Math.random() - 0.5), d.b.y + inp * (Math.random() - 0.5)]) } } // helpers function avg(items) { return items.reduce((acc, curr) => acc + curr, 0) / items.length } function map(v, min, max, omin, omax) { return omin + (v - min) / (max - min) * (omax - omin) } function clamp(v, min, max) { return Math.max(Math.min(v, max), min) } function lerp(a, b, fract) { return a + (b - a) * fract } function randomFrom(arr) { return arr[Math.floor(Math.random() * arr.length)] } function isWithin(x, min, max) { return min <= x && x <= max } // the following is copied from: https://turtletoy.net/turtle/789cce3829 let lineSegmentsDrawn = [] // polygon functions function LineSegment(p1, p2) { this.p1 = p1; this.p2 = p2; } LineSegment.prototype.unique = function() { for (let i=0, l=lineSegmentsDrawn.length; i<l; i++) { const ls = lineSegmentsDrawn[i]; if ( (equal2(this.p1, ls.p1) && equal2(this.p2, ls.p2)) || (equal2(this.p1, ls.p2) && equal2(this.p2, ls.p1)) ){ return false; } } lineSegmentsDrawn.push(this); return true; } function Polygon() { this.cp = []; // clip path: array of [x,y] pairs this.dp = []; // 2d line to draw: array of linesegments } Polygon.prototype.clone = function() { const p = new Polygon() p.cp = [...this.cp] p.dp = [...this.dp] return p } Polygon.prototype.addOutline = function(s=0) { for (let i=s, l=this.cp.length; i<l; i++) { this.dp.push(new LineSegment(this.cp[i], this.cp[(i+1)%l])); } } Polygon.prototype.createPoly = function(x,y,c,r,a) { this.cp = []; for (let i=0; i<c; i++) { this.cp.push( [x + Math.sin(i*Math.PI*2/c+a) * r, y + Math.cos(i*Math.PI*2/c+a) * r] ); } } Polygon.prototype.addHatching = function(a,d) { // todo, create a tight bounding polygon, for now fill screen const tp = new Polygon(); tp.createPoly(0,0,4,200,Math.PI*.5); const dx = Math.sin(a)*d, dy = Math.cos(a)*d; const cx = Math.sin(a)*200, cy = Math.cos(a)*200; for (let i = .5; i<150/d; i++) { tp.dp.push(new LineSegment([dx*i+cy,dy*i-cx], [dx*i-cy,dy*i+cx])); tp.dp.push(new LineSegment([-dx*i+cy,-dy*i-cx], [-dx*i-cy,-dy*i+cx])); } tp.boolean(this, false); this.dp = this.dp.concat(tp.dp); } Polygon.prototype.draw = function(t) { if (this.dp.length ==0) { return; } for (let i=0, l=this.dp.length; i<l; i++) { const d = this.dp[i]; if (d.unique()) { if (!equal2(d.p1, t.pos())) { t.penup(); t.goto(d.p1); t.pendown(); } t.goto(d.p2); } } } Polygon.prototype.inside = function(p) { // find number of intersections from p to far away - if even you're outside const p1 = [0, -1000]; let int = 0; for (let i=0, l=this.cp.length; i<l; i++) { if (segment_intersect2(p, p1, this.cp[i], this.cp[(i+1)%l])) { int ++; } } return int & 1; } Polygon.prototype.boolean = function(p, diff = true) { // very naive polygon diff algorithm - made this up myself const ndp = []; for (let i=0, l=this.dp.length; i<l; i++) { const ls = this.dp[i]; // find all intersections with clip path const int = []; for (let j=0, cl=p.cp.length; j<cl; j++) { const pint = segment_intersect2(ls.p1,ls.p2,p.cp[j],p.cp[(j+1)%cl]); if (pint) { int.push(pint); } } if (int.length == 0) { // 0 intersections, inside or outside? if (diff != p.inside(ls.p1)) { ndp.push(ls); } } else { int.push(ls.p1); int.push(ls.p2); // order intersection points on line ls.p1 to ls.p2 const cmp = sub2(ls.p2,ls.p1); int.sort((a,b) => dot2(sub2(a,ls.p1),cmp)-dot2(sub2(b,ls.p1),cmp)); for (let j=0; j<int.length-1; j++) { if (!equal2(int[j], int[j+1]) && diff != p.inside(scale2(add2(int[j],int[j+1]),.5))) { ndp.push(new LineSegment(int[j], int[j+1])); } } } } this.dp = ndp; return this.dp.length > 0; } // vec2 functions const equal2=(a,b)=>0.001>dist_sqr2(a,b); const scale2=(a,b)=>[a[0]*b,a[1]*b]; const add2=(a,b)=>[a[0]+b[0],a[1]+b[1]]; const sub2=(a,b)=>[a[0]-b[0],a[1]-b[1]]; const dot2=(a,b)=>a[0]*b[0]+a[1]*b[1]; const dist_sqr2=(a,b)=>(a[0]-b[0])*(a[0]-b[0])+(a[1]-b[1])*(a[1]-b[1]); const segment_intersect2=(a,b,d,c)=>{ const e=(c[1]-d[1])*(b[0]-a[0])-(c[0]-d[0])*(b[1]-a[1]); if(0==e)return false; c=((c[0]-d[0])*(a[1]-d[1])-(c[1]-d[1])*(a[0]-d[0]))/e; d=((b[0]-a[0])*(a[1]-d[1])-(b[1]-a[1])*(a[0]-d[0]))/e; return 0<=c&&1>=c&&0<=d&&1>=d?[a[0]+c*(b[0]-a[0]),a[1]+c*(b[1]-a[1])]:false; } setupHatching()