Raymarching fed into Contour Lines
Log in to post a comment.
// LL 2021 const turtle = new Turtle(); const text = new Text(); //Canvas.setpenopacity(-1); const detail_z = 201; // min=1, max=301, step=2 const detail_xy = 1.5; // min=0.1, max=3, step=0.1 const passes = 2; // min=1, max=3, step=1 (X, XY, XYZ) const show_debug = 0; /// min=0, max=1, step=1 (No,Yes) const scene = 5; // min=0, max=6, step=1 (Sphere,Torus,Sphere+Torus,Knot,Metaballs,Mobius,Box) const range = [ -1.1, 1.1 ]; const MAX_STEPS = 100; const MAX_DIST = 100; const SURF_DIST = .001; var debug_count = 0; function debug_print(string) { if (debug_count++<100) console.log(string); } function length2(v2) { return Math.sqrt(v2[0]*v2[0] + v2[1]*v2[1]); } function length3(v3) { return Math.sqrt(v3[0]*v3[0] + v3[1]*v3[1] + v3[2]*v3[2]); } function normalize3(v3) { var l = length3(v3); if (l<0.00001) l=1; return [v3[0]/l, v3[1]/l, v3[2]/l]; } function mul2(a2, f) { return [a2[0]*f, a2[1]*f]; } function mul3(a3, f) { return [a3[0]*f, a3[1]*f, a3[2]*f]; } function add3(a3, b3) { return [a3[0]+b3[0], a3[1]+b3[1], a3[2]+b3[2]]; } function sub3(a3, b3) { return [a3[0]-b3[0], a3[1]-b3[1], a3[2]-b3[2]]; } function cross3(a3, b3) { return [ a3[1] * b3[2] - a3[2] * b3[1], a3[2] * b3[0] - a3[0] * b3[2], a3[0] * b3[1] - a3[1] * b3[0] ]; } function fract3(v3) { return [ Math.trunc(v3[0]), Math.trunc(v3[1]), Math.trunc(v3[2]) ]; } function abs3(v3) { return [ Math.abs(v3[0]), Math.abs(v3[1]), Math.abs(v3[2]) ]; } function dot3(a3, b3) { return a3[0] * b3[0] + a3[1] * b3[1] + a3[2] * b3[2]; } function mul_mat2(v2, m22) { return [ v2[0] * m22[0] + v2[1] * m22[1], v2[0] * m22[2] + v2[1] * m22[3] ]; } function clamp(x, min, max) { return Math.min(max, Math.max(min, x)); } function smoothstep(edge0, edge1, x) { x = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0); return x * x * (3 - 2 * x); } function tri3(x3) { return abs3(sub3(fract3(x3), .5)); } function mix(x, y, a) { return x * (1-a) + y * a; } function smin(a, b , s) { var h = clamp( 0.5 + 0.5*(b-a)/s, 0. , 1.); return mix(b, a, h) - h*(1.0-h)*s; } function rotation_mat22(a) { var s = Math.sin(a); var c = Math.cos(a); return [c, -s, s, c]; } function mat2_r2(th) { var a2 = [ Math.sin(1.5707963 + th), Math.sin(th) ]; return [ a2[0], a2[1], -a2[1], a2[0] ]; } function GetRayDir(uv2, p3, l3, z) { var f3 = normalize3(sub3(l3, p3)); var r3 = normalize3(cross3([0,1,0], f3)); var u3 = cross3(f3, r3); var c3 = mul3(f3, z); var i3 = add3(add3(c3, mul3(r3, uv2[0])), mul3(u3, uv2[1])); var d3 = normalize3(i3); return d3; } // Box function sdBox(p3, s3) { p3 = sub3(abs3(p3), s3); var r = Math.min(Math.max(p3[0], Math.max(p3[1], p3[2])), 0); var q3 = [Math.max(p3[0], 0), Math.max(p3[1], 0), Math.max(p3[2], 0)]; q3 = add3(q3, [r,r,r]); return length3(q3); } // Torus function sdTorus(p3, r1, r2) { var cp2 = [ length2([p3[0], p3[2]]) - r1, p3[1] ]; var d = length2(cp2) - r2; return d; } // Knot function sdKnot(p3, r1, r2, twist, split) { var cp2 = [ length2([p3[0], p3[2]]) - r1, p3[1] ]; var a = Math.atan2(p3[2], p3[0]); // polar angle between -pi and pi cp2 = mul_mat2(cp2, rotation_mat22(a * twist)); cp2[1] = Math.abs(cp2[1]) - split; var d = length2(cp2) - r2; return d * .8; } // Sphere function sdSphere(p3, r) { var d = length3(p3) - r; return d; } // Mobius // Adapted from https://www.shadertoy.com/view/XldSDs function sdMobius(q3) { const toroidRadius = 0.8; // The object's disc radius. const polRot = 0.5; // Poloidal rotations. const ringNum = 16; // Number of quantized objects embedded between the rings. var p3 = [...q3]; var a = Math.atan2(p3[2], p3[0]); var xz = [ p3[0], p3[2] ]; var r2 = mat2_r2(a); xz = mul_mat2(xz, r2); p3[0] = xz[0]; p3[2] = xz[1]; p3[0] -= toroidRadius; var xy = [ p3[0], p3[1] ]; r2 = mat2_r2(a*polRot); xy = mul_mat2(xy, r2); p3[0] = xy[0]; p3[1] = xy[1]; p3 = abs3(sub3(abs3(p3), [.25, .25, .25])); var rail = Math.max(Math.max(p3[0], p3[1]) - .07, (Math.max(p3[1]-p3[0], p3[1] + p3[0])*.7071 - .075)); p3 = [...q3]; var ia = Math.floor(ringNum * a / 6.2831853); ia = (ia + .5) / ringNum * 6.2831853; xz = [ p3[0], p3[2] ]; r2 = mat2_r2(ia); xz = mul_mat2(xz, r2); p3[0] = xz[0]; p3[2] = xz[1]; p3[0] -= toroidRadius; xy = [ p3[0], p3[1] ]; r2 = mat2_r2(a*polRot); xy = mul_mat2(xy, r2); p3[0] = xy[0]; p3[1] = xy[1]; p3 = abs3(p3); var ring = Math.max(p3[0], p3[1]); ring = Math.max(Math.max(ring - .275, p3[2] - .03), -(ring - .2)); return smin(ring, rail, .03); } // Terrain - doesn't work function sdTerrain(p3) { //return p3[1]; var yzx = [ p3[1], p3[2], p3[0] ]; var n = dot3(tri3(add3(mul3(p3,0.3), tri3(mul3(yzx, 0.15)))), [0.44, 0.44, 0.44]); p3 = mul3(p3, 1.57);//1.5773;// - n; // The "n" mixes things up more. var vec2 = mul_mat2([p3[1], p3[2]], [.866025, .5, -.5, .866025]); p3[1] = vec2[0]; p3[2] = vec2[1]; vec2 = mul_mat2([p3[0], p3[2]], [.866025, .5, -.5, .866025]); p3[0] = vec2[0]; p3[2] = vec2[1]; yzx = [ p3[1], p3[2], p3[0] ]; n += dot3(tri3(add3(mul3(p3,0.45), tri3(mul3(yzx,0.225)))), [0.222, 0.222, 0.222]); return smoothstep(0.3, .95, n); } function sdMetaBalls(p3, r, spread) { var d = MAX_DIST; balls = [ [0, spread * 0.5, 0], [0, spread * -0.5, spread * 0.1], [spread * 0.7, 0, 0], [spread * -0.7, 0, 0] ]; for (b in balls) { var q3 = add3(p3, balls[b]); d=smin(d, sdSphere(q3, r), 0.45); } return d; } function map(p3) { var d = MAX_DIST; if (scene == 0 || scene == 2) d = Math.min(d, sdSphere(p3, 0.7)); if (scene == 1 || scene == 2) d = Math.min(d, sdTorus(p3, 0.8, 0.05)); if (scene == 3) d = Math.min(d, sdKnot(p3, 0.7, 0.1, 2.5, .2)); if (scene == 4) d = Math.min(d, sdMetaBalls(p3, 0.23, 0.8)); if (scene == 5) d = Math.min(d, sdMobius(p3)); if (scene == 6) d = Math.min(d, sdBox(p3, [0.5,0.5,0.5])); if (scene == 6) d = smin(d, sdBox(add3(p3, [0.6, 0.6, -0.6]), [0.2,0.2,0.2]), 0.5); return d; } function RayMarch(ro3, rd3) { var dO = 0; for (var i = 0; i < MAX_STEPS; i++) { var p3 = add3(ro3, mul3(rd3, dO)); var dS = map(p3); dO += dS; if (dO > MAX_DIST) return MAX_DIST; if (Math.abs(dS)<SURF_DIST) break; } return dO; } var pass = -1; function key(p2) { return p2[0] * 10000 + p2[1] * 10 + pass; } var cache = {}; var miss = 0; var hit = 0; var line_count = 0; var line_total_count = 0; var pass_start = 0; // p: 2D point in -100 to 100 range function zFunc(p2) { var key_p2 = key(p2); if (key_p2 in cache) { hit++; var dist = cache[key_p2]; return dist; } else miss++; // Convert to -1 to 1 var uv2 = [ p2[0] / 100, p2[1] / 100 ]; // Ray origin var ro3 = [0, -0.2, -1.2]; if (scene == 3) ro3 = [ 0, -1, -1 ]; if (scene == 4) ro3 = [ 0, 0, -1 ]; if (scene == 5) ro3 = [ 0, -1, -1.5 ]; if (scene == 6) ro3 = [ -1, -1, -1 ]; var l3 = [ 0, 0.0, 0 ]; if (scene == 3) l3 = [ 0, 0.4, 0 ]; if (scene == 5) l3 = [ 0, 0.4, 0 ]; // Ray direction var rd3 = GetRayDir(uv2, ro3, l3, 1.); // Get distance to intersection var dist = RayMarch(ro3, rd3); if (dist < MAX_DIST) { // Get intersection point var p3 = add3(ro3, mul3(rd3, dist)); dist = (p3[pass]-range[0]) / (range[1]-range[0]) * detail_z; } cache[key_p2] = dist; return dist; // Debug //return length2(uv2) * 10; //if (Math.sqrt(p[0]*p[0] + p[1]*p[1]) < 100) return 2; else return 0; } function floor(x) { return Math.round(x*10); } function line_key(line) { return floor(line[0][0]) * 1000000000 + floor(line[0][1]) * 1000000 + floor(line[1][0]) * 1000 + floor(line[1][1]); } var line_cache = {}; function is_good(line) { var key = line_key(line); if (key in line_cache) return false; line_cache[key]=1; return true; } function walk(i) { var old_pass = pass; pass = Math.floor(i / (detail_z+1)); if (old_pass != pass) { var now = performance.now(); if (show_debug && old_pass >= 0) { turtle.jump(-99, 97 - old_pass * 5); var percent1 = (line_count / line_total_count * 100).toFixed(1); var percent2 = (hit / (hit+miss) * 100).toFixed(1); var string =`Pass: ${old_pass}`; string += ` | Lines: ${line_count} (${percent1}%)`; //string +=` | Cache hit: ${hit} / ${hit+miss} (${percent2}%)`; var elapsed_s = ((now - pass_start)/1000).toFixed(1); string +=` | Time: ${elapsed_s} s`; text.print(turtle, string, .15); hit = 0; miss = 0; line_count = 0; line_total_count = 0; } pass_start = now; } if (pass >= passes) return false; const lines = ContourLines(i%detail_z, 1/detail_xy, zFunc); lines.forEach(line => { if (is_good(line)) { turtle.jump(line[0]); turtle.goto(line[1]); line_count++; } line_total_count++; }); if (show_debug) { const y = 99 - passes * 5, min_x = -90, max_x = 90; x1 = min_x + (max_x - min_x) * (i-1) / (detail_z * passes); x2 = min_x + (max_x - min_x) * (i-0) / (detail_z * passes); turtle.jump(x1, y); turtle.goto(x2, y); } return true; } // Metaball Contour Lines. Created by Reinder Nijhoff 2020 - @reindernijhoff // The MIT License // https://turtletoy.net/turtle/104c4775c5 function ContourLines(z, step, zFunc) { const intersectSegmentZ = (z, v1, v2) => { if (v1[2] === v2[2]) return false; const t = (z - v1[2]) / (v2[2] - v1[2]); if (t <= 0 || t > 1) return false; return [v1[0]+(v2[0]-v1[0])*t, v1[1]+(v2[1]-v1[1])*t]; } const intersectTriangleZ = (z, p1, p2, p3) => { const p = []; const v1 = intersectSegmentZ(z, p1, p2); const v2 = intersectSegmentZ(z, p2, p3); const v3 = intersectSegmentZ(z, p3, p1); if (v1 && v2) p.push([v1, v2]); if (v1 && v3) p.push([v1, v3]); if (v2 && v3) p.push([v2, v3]); return p; } const result = []; for (let x = -100; x <= 100; x += step) { for (let y = -100; y <= 100; y += step) { const corners = [[x, y], [x+step, y], [x+step, y+step], [x, y+step]]; corners.forEach( c => c[2] = zFunc(c) ); const c3 = [x+step/2, y+step/2, zFunc([x+step/2, y+step/2])]; for (let i=0; i<4; i++) { result.push(...intersectTriangleZ(z, corners[i], corners[(i+1) & 3], c3)); } } } return result; } //////////////////////////////////////////////////////////////// // Text utility code. Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/1713ddbe99 //////////////////////////////////////////////////////////////// function Text() { class Text { print (t, str, scale) { t.radians(); let pos = [t.x(), t.y()], h = t.h(), o = pos; str.split('').map(c => { const i = c.charCodeAt(0) - 32; if (i < 0 ) { pos = o = this.rotAdd([0, 48*scale], o, h); } else if (i > 96 ) { pos = this.rotAdd([16*scale, 0], o, h); } else { const d = dat[i], lt = d[0]*scale, rt = d[1]*scale, paths = d[2]; paths.map( p => { t.up(); p.map( s=> { t.goto(this.rotAdd([s[0]*scale - lt, s[1]*scale], pos, h)); t.down(); }); }); pos = this.rotAdd([rt - lt, 0], pos, h); } }); } rotAdd (a, b, h) { return [Math.cos(h)*a[0] - Math.sin(h)*a[1] + b[0], Math.cos(h)*a[1] + Math.sin(h)*a[0] + b[1]]; } } const dat = ('br>eoj^jl<jqirjskrjq>brf^fe<n^ne>`ukZdz<qZjz<dgrg<cmqm>`thZhw<lZlw<qao_l^h^e_caccdeefg'+ 'gmiojpkqmqporlshsercp>^vs^as<f^h`hbgdeeceacaab_d^f^h_k`n`q_s^<olmmlolqnspsrrspsnqlol>]wtgtfsereqfph'+ 'nmlpjrhsdsbraq`o`makbjifjekckaj_h^f_eaecffhimporqssstrtq>eoj`i_j^k_kajcid>cqnZl\\j_hcghglhqjulxnz>c'+ 'qfZh\\j_lcmhmllqjuhxfz>brjdjp<egom<ogem>]wjajs<ajsj>fnkojpiojnkokqis>]wajsj>fnjniojpkojn>_usZaz>`ti'+ '^f_dbcgcjdofrisksnrpoqjqgpbn_k^i^>`tfbhak^ks>`tdcdbe`f_h^l^n_o`pbpdofmicsqs>`te^p^jfmfogphqkqmppnrk'+ 'shserdqco>`tm^clrl<m^ms>`to^e^dgefhekenfphqkqmppnrkshserdqco>`tpao_l^j^g_ebdgdlepgrjsksnrppqmqlping'+ 'kfjfggeidl>`tq^gs<c^q^>`th^e_dadceegfkgnhpjqlqopqorlshserdqcocldjfhigmfoepcpao_l^h^>`tpeohmjjkikfjd'+ 'hcecddaf_i^j^m_oapepjoomrjshserdp>fnjgihjikhjg<jniojpkojn>fnjgihjikhjg<kojpiojnkokqis>^vrabjrs>]wag'+ 'sg<amsm>^vbarjbs>asdcdbe`f_h^l^n_o`pbpdofngjijl<jqirjskrjq>]xofndlcicgdfeehekfmhnknmmnk<icgefhfkgmh'+ 'n<ocnknmpnrntluiugtdsbq`o_l^i^f_d`bbad`g`jambodqfrislsorqqrp<pcokompn>asj^bs<j^rs<elol>_tc^cs<c^l^o'+ '_p`qbqdpfoglh<chlhoipjqlqopqorlscs>`urcqao_m^i^g_eadccfckdnepgrismsorqprn>_tc^cs<c^j^m_oapcqfqkpnop'+ 'mrjscs>`sd^ds<d^q^<dhlh<dsqs>`rd^ds<d^q^<dhlh>`urcqao_m^i^g_eadccfckdnepgrismsorqprnrk<mkrk>_uc^cs<'+ 'q^qs<chqh>fnj^js>brn^nnmqlrjshsfreqdndl>_tc^cs<q^cl<hgqs>`qd^ds<dsps>^vb^bs<b^js<r^js<r^rs>_uc^cs<c'+ '^qs<q^qs>_uh^f_daccbfbkcndpfrhslsnrppqnrkrfqcpan_l^h^>_tc^cs<c^l^o_p`qbqepgohlici>_uh^f_daccbfbkcnd'+ 'pfrhslsnrppqnrkrfqcpan_l^h^<koqu>_tc^cs<c^l^o_p`qbqdpfoglhch<jhqs>`tqao_l^h^e_caccdeefggmiojpkqmqpo'+ 'rlshsercp>brj^js<c^q^>_uc^cmdpfrisksnrppqmq^>asb^js<r^js>^v`^es<j^es<j^os<t^os>`tc^qs<q^cs>asb^jhjs'+ '<r^jh>`tq^cs<c^q^<csqs>cqgZgz<hZhz<gZnZ<gznz>cqc^qv>cqlZlz<mZmz<fZmZ<fzmz>brj\\bj<j\\rj>asazsz>fnkc'+ 'ieigjhkgjfig>atpeps<phnfleiegfehdkdmepgrislsnrpp>`sd^ds<dhffhekemfohpkpmopmrkshsfrdp>asphnfleiegfeh'+ 'dkdmepgrislsnrpp>atp^ps<phnfleiegfehdkdmepgrislsnrpp>asdkpkpiognfleiegfehdkdmepgrislsnrpp>eqo^m^k_j'+ 'bjs<gene>atpepuoxnylzizgy<phnfleiegfehdkdmepgrislsnrpp>ate^es<eihfjemeofpips>fni^j_k^j]i^<jejs>eoj^'+ 'k_l^k]j^<kekvjyhzfz>are^es<oeeo<ikps>fnj^js>[y_e_s<_ibfdegeifjijs<jimfoeretfuius>ateees<eihfjemeofp'+ 'ips>atiegfehdkdmepgrislsnrppqmqkphnfleie>`sdedz<dhffhekemfohpkpmopmrkshsfrdp>atpepz<phnfleiegfehdkd'+ 'mepgrislsnrpp>cpgegs<gkhhjfleoe>bsphofleieffehfjhkmlompopporlsisfrep>eqj^jokrmsos<gene>ateeeofrhsks'+ 'mrpo<peps>brdejs<pejs>_ubefs<jefs<jens<rens>bseeps<pees>brdejs<pejshwfydzcz>bspees<eepe<esps>cqlZj['+ 'i\\h^h`ibjckekgii<j[i]i_jakbldlfkhgjkllnlpkrjsiuiwjy<ikkmkojqirhthvixjylz>fnjZjz>cqhZj[k\\l^l`kbjci'+ 'eigki<j[k]k_jaibhdhfihmjilhnhpirjskukwjy<kkimiojqkrltlvkxjyhz>^vamakbhdgfghhlknlplrksi<akbidhfhhill'+ 'nmpmrlsisg>brb^bscsc^d^dsese^f^fsgsg^h^hsisi^j^jsksk^l^lsmsm^n^nsoso^p^psqsq^r^rs').split('>').map( r=> { return [r.charCodeAt(0)-106,r.charCodeAt(1)-106, r.substr(2).split('<').map(a => {const ret = []; for (let i=0; i<a.length; i+=2) {ret.push(a.substr(i, 2).split('').map(b => b.charCodeAt(0) -106));} return ret; })]; }); return new Text(); }