Canvas.setpenopacity(.15); (function(global){ var module = global.noise = {}; function Grad(x, y, z) { this.x = x; this.y = y; this.z = z; } Grad.prototype.dot2 = function(x, y) { return this.x*x + this.y*y; }; Grad.prototype.dot3 = function(x, y, z) { return this.x*x + this.y*y + this.z*z; }; var grad3 = [new Grad(1,1,0),new Grad(-1,1,0),new Grad(1,-1,0),new Grad(-1,-1,0), new Grad(1,0,1),new Grad(-1,0,1),new Grad(1,0,-1),new Grad(-1,0,-1), new Grad(0,1,1),new Grad(0,-1,1),new Grad(0,1,-1),new Grad(0,-1,-1)]; var p = [151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180]; // To remove the need for index wrapping, double the permutation table length var perm = new Array(512); var gradP = new Array(512); // This isn't a very good seeding function, but it works ok. It supports 2^16 // different seed values. Write something better if you need more seeds. module.seed = function(seed) { if(seed > 0 && seed < 1) { // Scale the seed out seed *= 65536; } seed = Math.floor(seed); if(seed < 256) { seed |= seed << 8; } for(var i = 0; i < 256; i++) { var v; if (i & 1) { v = p[i] ^ (seed & 255); } else { v = p[i] ^ ((seed>>8) & 255); } perm[i] = perm[i + 256] = v; gradP[i] = gradP[i + 256] = grad3[v % 12]; } }; // Initialize the noise generator with a random seed // ************************************************ // ***** THIS IS THE MODIFIED LINE ***** // ************************************************ module.seed(Math.random()); // ************************************************ // Skewing and unskewing factors for 2, 3, and 4 dimensions var F2 = 0.5*(Math.sqrt(3)-1); var G2 = (3-Math.sqrt(3))/6; var F3 = 1/3; var G3 = 1/6; // 2D simplex noise module.simplex2 = function(xin, yin) { var n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in var s = (xin+yin)*F2; // Hairy factor for 2D var i = Math.floor(xin+s); var j = Math.floor(yin+s); var t = (i+j)*G2; var x0 = xin-i+t; // The x,y distances from the cell origin, unskewed. var y0 = yin-j+t; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if(x0>y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1) i1=1; j1=0; } else { // upper triangle, YX order: (0,0)->(0,1)->(1,1) i1=0; j1=1; } // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords var y1 = y0 - j1 + G2; var x2 = x0 - 1 + 2 * G2; // Offsets for last corner in (x,y) unskewed coords var y2 = y0 - 1 + 2 * G2; // Work out the hashed gradient indices of the three simplex corners i &= 255; j &= 255; var gi0 = gradP[i+perm[j]]; var gi1 = gradP[i+i1+perm[j+j1]]; var gi2 = gradP[i+1+perm[j+1]]; // Calculate the contribution from the three corners var t0 = 0.5 - x0*x0-y0*y0; if(t0<0) { n0 = 0; } else { t0 *= t0; n0 = t0 * t0 * gi0.dot2(x0, y0); // (x,y) of grad3 used for 2D gradient } var t1 = 0.5 - x1*x1-y1*y1; if(t1<0) { n1 = 0; } else { t1 *= t1; n1 = t1 * t1 * gi1.dot2(x1, y1); } var t2 = 0.5 - x2*x2-y2*y2; if(t2<0) { n2 = 0; } else { t2 *= t2; n2 = t2 * t2 * gi2.dot2(x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70 * (n0 + n1 + n2); }; // 3D simplex noise (included for completeness, though not used in drawing) module.simplex3 = function(xin, yin, zin) { var n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in var s = (xin+yin+zin)*F3; // Hairy factor for 3D var i = Math.floor(xin+s); var j = Math.floor(yin+s); var k = Math.floor(zin+s); var t = (i+j+k)*G3; var x0 = xin-i+t; // The x,y,z distances from the cell origin, unskewed. var y0 = yin-j+t; var z0 = zin-k+t; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords if(x0 >= y0) { if(y0 >= z0) { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } else if(x0 >= z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } } else { if(y0 < z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } else if(x0 < z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. var x1 = x0 - i1 + G3; // Offsets for second corner var y1 = y0 - j1 + G3; var z1 = z0 - k1 + G3; var x2 = x0 - i2 + 2 * G3; // Offsets for third corner var y2 = y0 - j2 + 2 * G3; var z2 = z0 - k2 + 2 * G3; var x3 = x0 - 1 + 3 * G3; // Offsets for fourth corner var y3 = y0 - 1 + 3 * G3; var z3 = z0 - 1 + 3 * G3; // Work out the hashed gradient indices of the four simplex corners i &= 255; j &= 255; k &= 255; var gi0 = gradP[i+ perm[j+ perm[k ]]]; var gi1 = gradP[i+i1+perm[j+j1+perm[k+k1]]]; var gi2 = gradP[i+i2+perm[j+j2+perm[k+k2]]]; var gi3 = gradP[i+ 1+perm[j+ 1+perm[k+ 1]]]; // Calculate the contribution from the four corners var t0 = 0.6 - x0*x0 - y0*y0 - z0*z0; if(t0<0) { n0 = 0; } else { t0 *= t0; n0 = t0 * t0 * gi0.dot3(x0, y0, z0); } var t1 = 0.6 - x1*x1 - y1*y1 - z1*z1; if(t1<0) { n1 = 0; } else { t1 *= t1; n1 = t1 * t1 * gi1.dot3(x1, y1, z1); } var t2 = 0.6 - x2*x2 - y2*y2 - z2*z2; if(t2<0) { n2 = 0; } else { t2 *= t2; n2 = t2 * t2 * gi2.dot3(x2, y2, z2); } var t3 = 0.6 - x3*x3 - y3*y3 - z3*z3; if(t3<0) { n3 = 0; } else { t3 *= t3; n3 = t3 * t3 * gi3.dot3(x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 32 * (n0 + n1 + n2 + n3); }; // ##### Perlin noise stuff (Included for completeness) ##### function fade(t) { return t*t*t*(t*(t*6-15)+10); } function lerp(a, b, t) { return (1-t)*a + t*b; } // 2D Perlin Noise module.perlin2 = function(x, y) { // Find unit grid cell containing point var X = Math.floor(x), Y = Math.floor(y); // Get relative xy coordinates of point within that cell x = x - X; y = y - Y; // Wrap the integer cells at 255 (smaller integer period can be introduced here) X = X & 255; Y = Y & 255; // Calculate noise contributions from each of the four corners var n00 = gradP[X+perm[Y]].dot2(x, y); var n01 = gradP[X+perm[Y+1]].dot2(x, y-1); var n10 = gradP[X+1+perm[Y]].dot2(x-1, y); var n11 = gradP[X+1+perm[Y+1]].dot2(x-1, y-1); // Compute the fade curve value for x var u = fade(x); // Interpolate the four results return lerp( lerp(n00, n10, u), lerp(n01, n11, u), fade(y)); }; // 3D Perlin Noise module.perlin3 = function(x, y, z) { // Find unit grid cell containing point var X = Math.floor(x), Y = Math.floor(y), Z = Math.floor(z); // Get relative xyz coordinates of point within that cell x = x - X; y = y - Y; z = z - Z; // Wrap the integer cells at 255 (smaller integer period can be introduced here) X = X & 255; Y = Y & 255; Z = Z & 255; // Calculate noise contributions from each of the eight corners var n000 = gradP[X+ perm[Y+ perm[Z ]]].dot3(x, y, z); var n001 = gradP[X+ perm[Y+ perm[Z+1]]].dot3(x, y, z-1); var n010 = gradP[X+ perm[Y+1+perm[Z ]]].dot3(x, y-1, z); var n011 = gradP[X+ perm[Y+1+perm[Z+1]]].dot3(x, y-1, z-1); var n100 = gradP[X+1+perm[Y+ perm[Z ]]].dot3(x-1, y, z); var n101 = gradP[X+1+perm[Y+ perm[Z+1]]].dot3(x-1, y, z-1); var n110 = gradP[X+1+perm[Y+1+perm[Z ]]].dot3(x-1, y-1, z); var n111 = gradP[X+1+perm[Y+1+perm[Z+1]]].dot3(x-1, y-1, z-1); // Compute the fade curve value for x, y, z var u = fade(x); var v = fade(y); var w = fade(z); // Interpolate return lerp( lerp( lerp(n000, n100, u), lerp(n001, n101, u), w), lerp( lerp(n010, n110, u), lerp(n011, n111, u), w), v); }; })(this); // Fractional Brownian Motion using Simplex Noise function FBM(x, y) { // Initial frequency and amplitude (you might need noise.simplex2, not just simplex2) var total = 0; var amplitude = 1; var frequency = freq; // Use the global freq defined later var maxAmplitude = 0; // Used for normalizing result to [-1, 1] or [0, 1] for(var i = 0; i < 5; i++) { // Number of octaves (layers of noise) total += noise.simplex2(x * frequency, y * frequency) * amplitude; maxAmplitude += amplitude; amplitude *= 0.5; // Persistence (how much each octave contributes) frequency *= 2; // Lacunarity (how much frequency increases each octave) } // Normalize the result if needed, depends on how you use it. // This normalization maps it roughly to [-1, 1] // return total / maxAmplitude; // The original code didn't normalize explicitly, scale might be handled by 'amp' later return total; } // Calculate the gradient of the FBM field at a point (x, y) // This tells us the direction of "steepest ascent" of the noise value function gradient (x, y) { // Small offset for finite difference calculation var eps = 0.01; // Smaller epsilon might give more accurate gradient // Calculate FBM at slightly offset points var v0 = FBM(x - eps, y); // FBM slightly to the left var v1 = FBM(x + eps, y); // FBM slightly to the right var v2 = FBM(x, y - eps); // FBM slightly below var v3 = FBM(x, y + eps); // FBM slightly above // Approximate partial derivatives using central difference // dFBM/dx ≈ (FBM(x+eps, y) - FBM(x-eps, y)) / (2 * eps) // dFBM/dy ≈ (FBM(x, y+eps) - FBM(x, y-eps)) / (2 * eps) // Note: Original code used (v0-v1)/eps and (v2-v3)/eps. // (v0-v1) = FBM(x-eps, y) - FBM(x+eps, y) which is -(v1-v0) // (v2-v3) = FBM(x, y-eps) - FBM(x, y+eps) which is -(v3-v2) // This gives the negative gradient (direction of steepest descent), which might be intended for flow lines. // Let's stick to the original calculation's *effect* even if the formula differs slightly // Using (v1 - v0) / (2*eps) for dx and (v3 - v2) / (2*eps) for dy is standard central difference. // The original code effectively computed: [-(v1-v0)/eps, -(v3-v2)/eps] // Let's use a slightly adjusted eps for the original formula: var gradX = (v1 - v0) / (2*eps); // Approx dFBM/dx var gradY = (v3 - v2) / (2*eps); // Approx dFBM/dy // The original code returned [(v0 - v1) / eps, (v2 - v3) / eps] // which is [-2 * gradX, -2 * gradY] approximately. // So the turtles move opposite to the gradient, scaled by 2/eps factor (absorbed into 'amp'). // Let's return the standard gradient and adjust 'amp' or direction if needed. // Or, match the original output structure: return [ (v0 - v1) / eps, (v2 - v3) / eps ]; // Matches original output // return [gradX, gradY]; // Standard gradient output } // --- Simulation Parameters --- const dim = 128; // Grid dimension (dim x dim turtles) const freq = 0.0015; // Base frequency for the noise field const amp = 0.1 / freq; // Movement amplitude/step size (adjust as needed) const startSize = 200; // Range for random starting positions (centered at 0,0) const length = 50; // Number of steps each turtle takes // --- Turtle Initialization --- const turtles = []; for(var y = 0; y < dim; y++){ turtles[y] = []; for(var x = 0; x < dim; x++){ var t = new Turtle(); t.penup(); // Random start position within the startSize box t.goto((Math.random() - 0.5) * startSize, (Math.random() - 0.5) * startSize); t.pendown(); // Optional: Initial random turn based on local noise - might not be needed // t.right((FBM(t.x(), t.y()) ) * 360); turtles[y][x] = t; } } // --- Animation Loop Function --- function walk(i) { for(var y = 0; y < dim; y++){ for(var x = 0; x < dim; x++){ const turtle = turtles[y][x]; // Get the gradient (direction) from the noise field at the turtle's current position var grad = gradient(turtle.x(), turtle.y()); // Move the turtle along the gradient (or opposite to it, based on gradient calculation) // The amplitude 'amp' scales the step size. turtle.goto(turtle.x() + grad[0] * amp, turtle.y() + grad[1] * amp); } } // Continue simulation as long as step count 'i' is less than 'length' return i < length; }