I totally forgot... Happy belated easter!
gogeometry.com/geoge…ion-ipad-tablet.html
Log in to post a comment.
const plotterPenThickness = 1; //min=.01 max=5 step=.01 const border = 2; // You can find the Turtle API reference here: https://turtletoy.net/syntax Canvas.setpenopacity(1); const turtle = new Turtle(); const polygons = new Polygons(); [100-border].filter(b => b < 100).forEach(brd => [([[[-120, -brd], [120, -brd], [120, -120], [-120, -120]],[[brd, -120], [brd, 120], [120, 120], [120, -120]],[[-120, brd], [120, brd], [120, 120], [-120, 120]],[[-brd, -120], [-brd, 120], [-120, 120], [-120, -120]]]).forEach(b => {const p = polygons.create();p.addPoints(...b);polygons.draw(turtle, p);}),[[-1,-1],[1,-1],[1,1],[-1,1],[-1,-1]].forEach((i, k) => k == 0? turtle.jump(scale2(i, brd)): turtle.goto(scale2(i, brd)))]); const contourPoints = translatedEggPoints([0, 80], 160); const contourEdges = pts2Edges(contourPoints); const upd = new UniformPointDistributor().getPointIterator(); const eggs = Array.from({length: 1000}).map(i => upd.next().value).map(pt => [pt, isInPolygon(contourEdges, pt)?1:0]).sort((a,b) => a[1]<b[1]?1:-1).map(pt => [pt[0], pt[1]==1]); let eggCount = 0; function walk(i) { const [pt, isInside] = eggs.shift(); const egg = circleEggPoints(pt, (isInside?1.2:1)*(15+(1-len2(pt)/80)*8), 2*Math.PI*Math.random()); const p = polygons.create(); p.addPoints(...egg); if(isInside) { p.addHatching(Math.random(), plotterPenThickness * (Math.random() + .5)); Math.random() < .75? p.addHatching(Math.random(), plotterPenThickness * (Math.random() + .5)):''; Math.random() < .75? p.addHatching(Math.random(), plotterPenThickness * (Math.random() + 1)):''; } p.addOutline(); polygons.draw(turtle, p); return eggs.length > 0; } function circleEggPoints(center, height, rotation) { return translatedEggPoints(add2(center, trans2(rot2(rotation), [0, height / 2])), height, rotation); } function translatedEggPoints(bottomCenter, height, rotation = 0) { return eggPoints(height).map(pt => add2(trans2(rot2(rotation), pt), bottomCenter)); } function eggPoints(height) { const width = 2 * height / (4 - Math.SQRT2); const innerRadius = width / 2; const upperRadius = height - width; const O = [0, -innerRadius]; //innerCenter const Q = [0, -width]; //upperCenter const A = [-innerRadius, -innerRadius]; //most left pt const B = [innerRadius, -innerRadius]; //most right pt return [ ...circlePoints(innerRadius, Math.PI/2, Math.PI/2).map(pt => add2(pt, O)), ...circlePoints(2*innerRadius, Math.PI/4, Math.PI).map(pt => add2(pt, B)), ...circlePoints(upperRadius, Math.PI/2, 5*Math.PI/4).map(pt => add2(pt, Q)), ...circlePoints(2*innerRadius, Math.PI/4, -Math.PI/4).map(pt => add2(pt, A)), ...circlePoints(innerRadius, Math.PI/2, 0).map(pt => add2(pt, O)), ]; } //////////////////////////////////////////////////////////////// // 2D Vector Math utility code - Created by several Turtletoy users //////////////////////////////////////////////////////////////// function norm2(a) { return scale2(a, 1/len2(a)); } function add2(a, b) { return [a[0]+b[0], a[1]+b[1]]; } function sub2(a, b) { return [a[0]-b[0], a[1]-b[1]]; } function mul2(a, b) { return [a[0]*b[0], a[1]*b[1]]; } function scale2(a, s) { return mul2(a, [s,s]); } function lerp2(a,b,t) { return [a[0]*(1-t) + b[0]*t, a[1]*(1-t) + b[1]*t]; } function lenSq2(a) { return a[0]**2+a[1]**2; } function len2(a) { return Math.sqrt(lenSq2(a)); } function rot2(a) { return [Math.cos(a), -Math.sin(a), Math.sin(a), Math.cos(a)]; } function trans2(m, a) { return [m[0]*a[0]+m[2]*a[1], m[1]*a[0]+m[3]*a[1]]; } //Matrix(2x1) x Matrix(2x2) function dist2(a,b) { return Math.hypot(...sub2(a,b)); } function dot2(a,b) { return a[0]*b[0]+a[1]*b[1]; } function cross2(a,b) { return a[0]*b[1] - a[1]*b[0]; } function multiply2(a2x2, a) { return [(a[0]*a2x2[0])+(a[1]*a2x2[1]),(a[0]*a2x2[2])+(a[1]*a2x2[3])]; } //Matrix(2x2) x Matrix(1x2) function intersect_info2(as, ad, bs, bd) { const d = [bs[0] - as[0], bs[1] - as[1]]; const det = bd[0] * ad[1] - bd[1] * ad[0]; if(det === 0) return false; const res = [(d[1] * bd[0] - d[0] * bd[1]) / det, (d[1] * ad[0] - d[0] * ad[1]) / det]; return [...res, add2(as, scale2(ad, res[0]))]; } function intersect_ray2(a, b, c, d) { const i = intersect_info2(a, b, c, d); return i === false? i: i[2]; } function segment_intersect2(a,b,c,d, inclusive = true) { const i = intersect_info2(a, sub2(b, a), c, sub2(d, c)); if(i === false) return false; const t = inclusive? 0<=i[0]&&i[0]<=c&&0<=i[1]&&i[1]<=1: 0<i[0]&&i[0]<1&&0<i[1]&&i[1]<1; return t?i[2]:false; } function approx2(a,b) { return len2(sub2(a,b)) < 0.0001 } function eq2(a,b) { return a[0]==b[0]&&a[1]==b[1]; } function clamp2(a, tl, br) { return [Math.max(Math.min(br[0], a[0]), tl[0]), Math.max(Math.min(br[1], a[1]), tl[1])]; } //////////////////////////////////////////////////////////////// // Start of some path utility code - Created by Jurgen Westerhof 2023 //////////////////////////////////////////////////////////////// function circlePoints(radius, extend = 2 * Math.PI, clockWiseStart = 0, steps = null, includeLast = false) { return [steps == null? (radius*extend+1)|0: steps].map(steps => Array.from({length: steps}).map((v, i, a) => [radius * Math.cos(clockWiseStart + extend*i/(a.length-(includeLast?1:0))), radius * Math.sin(clockWiseStart + extend*i/(a.length-(includeLast?1:0)))])).pop(); } function pts2Edges(pts) { return pts.map((v, i, a) => [v, a[(i+1)%a.length]]); } function drawPath(turtle, pts) { return pts.forEach((pt, i) => turtle[i == 0? 'jump':'goto'](pt)); } function drawTour(turtle, pts) { return drawPath(turtle, pts.concat([pts[0]])); } function drawPoint(turtle, pt) { return drawTour(turtle, circlePoints(.5).map(p => add2(p, pt))); } function isInPolygon(edges, pt) { return edges.map(edge => intersect_info2(edge[0], sub2(edge[1], edge[0]), pt, [0, 300])).filter(ii => ii !== false && 0 <= ii[0] && ii[0] <= 1 && 0 < ii[1]).length % 2 == 1; } //////////////////////////////////////////////////////////////// // Polygon Clipping utility code - Created by Reinder Nijhoff 2019 // (Polygon binning by Lionel Lemarie 2021) // https://turtletoy.net/turtle/a5befa1f8d //////////////////////////////////////////////////////////////// function Polygons(){const t=[],s=25,e=Array.from({length:s**2},t=>[]),n=class{constructor(){this.cp=[],this.dp=[],this.aabb=[]}addPoints(...t){let s=1e5,e=-1e5,n=1e5,h=-1e5;(this.cp=[...this.cp,...t]).forEach(t=>{s=Math.min(s,t[0]),e=Math.max(e,t[0]),n=Math.min(n,t[1]),h=Math.max(h,t[1])}),this.aabb=[s,n,e,h]}addSegments(...t){t.forEach(t=>this.dp.push(t))}addOutline(){for(let t=0,s=this.cp.length;t<s;t++)this.dp.push(this.cp[t],this.cp[(t+1)%s])}draw(t){for(let s=0,e=this.dp.length;s<e;s+=2)t.jump(this.dp[s]),t.goto(this.dp[s+1])}addHatching(t,s){const e=new n;e.cp.push([-1e5,-1e5],[1e5,-1e5],[1e5,1e5],[-1e5,1e5]);const h=Math.sin(t)*s,o=Math.cos(t)*s,a=200*Math.sin(t),i=200*Math.cos(t);for(let t=.5;t<150/s;t++)e.dp.push([h*t+i,o*t-a],[h*t-i,o*t+a]),e.dp.push([-h*t+i,-o*t-a],[-h*t-i,-o*t+a]);e.boolean(this,!1),this.dp=[...this.dp,...e.dp]}inside(t){let s=0;for(let e=0,n=this.cp.length;e<n;e++)this.segment_intersect(t,[.1,-1e3],this.cp[e],this.cp[(e+1)%n])&&s++;return 1&s}boolean(t,s=!0){const e=[];for(let n=0,h=this.dp.length;n<h;n+=2){const h=this.dp[n],o=this.dp[n+1],a=[];for(let s=0,e=t.cp.length;s<e;s++){const n=this.segment_intersect(h,o,t.cp[s],t.cp[(s+1)%e]);!1!==n&&a.push(n)}if(0===a.length)s===!t.inside(h)&&e.push(h,o);else{a.push(h,o);const n=o[0]-h[0],i=o[1]-h[1];a.sort((t,s)=>(t[0]-h[0])*n+(t[1]-h[1])*i-(s[0]-h[0])*n-(s[1]-h[1])*i);for(let n=0;n<a.length-1;n++)(a[n][0]-a[n+1][0])**2+(a[n][1]-a[n+1][1])**2>=.001&&s===!t.inside([(a[n][0]+a[n+1][0])/2,(a[n][1]+a[n+1][1])/2])&&e.push(a[n],a[n+1])}}return(this.dp=e).length>0}segment_intersect(t,s,e,n){const h=(n[1]-e[1])*(s[0]-t[0])-(n[0]-e[0])*(s[1]-t[1]);if(0===h)return!1;const o=((n[0]-e[0])*(t[1]-e[1])-(n[1]-e[1])*(t[0]-e[0]))/h,a=((s[0]-t[0])*(t[1]-e[1])-(s[1]-t[1])*(t[0]-e[0]))/h;return o>=0&&o<=1&&a>=0&&a<=1&&[t[0]+o*(s[0]-t[0]),t[1]+o*(s[1]-t[1])]}};return{list:()=>t,create:()=>new n,draw:(n,h,o=!0)=>{reducedPolygonList=function(n){const h={},o=200/s;for(var a=0;a<s;a++){const c=a*o-100,r=[0,c,200,c+o];if(!(n[3]<r[1]||n[1]>r[3]))for(var i=0;i<s;i++){const c=i*o-100;r[0]=c,r[2]=c+o,n[0]>r[2]||n[2]<r[0]||e[i+a*s].forEach(s=>{const e=t[s];n[3]<e.aabb[1]||n[1]>e.aabb[3]||n[0]>e.aabb[2]||n[2]<e.aabb[0]||(h[s]=1)})}}return Array.from(Object.keys(h),s=>t[s])}(h.aabb);for(let t=0;t<reducedPolygonList.length&&h.boolean(reducedPolygonList[t]);t++);h.draw(n),o&&function(n){t.push(n);const h=t.length-1,o=200/s;e.forEach((t,e)=>{const a=e%s*o-100,i=(e/s|0)*o-100,c=[a,i,a+o,i+o];c[3]<n.aabb[1]||c[1]>n.aabb[3]||c[0]>n.aabb[2]||c[2]<n.aabb[0]||t.push(h)})}(h)}}} //////////////////////////////////////////////////////////////// // Uniform Point Distribution code - Created by Jurgen Westerhof 2023 //////////////////////////////////////////////////////////////// function UniformPointDistributor(leftTop = [-100, -100], rightBottom = [100, 100]) { class UniformPointDistributor { constructor(leftTop = [-100, -100], rightBottom = [100, 100]) { this.leftTop = leftTop; this.rightBottom = rightBottom; this.width = rightBottom[0]-leftTop[0]; this.height = rightBottom[1]-leftTop[1]; this.maxDist = (this.width**2+this.height**2)**.5; this.pts = []; } *getPointIterator(radiusFunction = null, candidates = 20, maxTries = 1000) { if(radiusFunction == null) radiusFunction = (x, y, maximum) => 0; const randomPoint = () => [Math.random()*this.width+this.leftTop[0],Math.random()*this.height+this.leftTop[1]]; this.pts.push([randomPoint()].map(pt => [...pt, radiusFunction(...pt)])[0]); yield this.pts[this.pts.length - 1]; while(true) { let pt = [0,0,-1]; let tries = 0; while(pt[2] < 0 && tries < maxTries) { tries++; //using [length] candidate points pt = Array.from({length: candidates}) //which are random points .map(i => randomPoint()) //then add the distance to that candidate minus the radius of each point it is compared to .map(i => [i[0], i[1], this.pts.map(j => [j[0], j[1], Math.hypot(i[0]-j[0], i[1]-j[1]) - j[2]]) //so that it is the smallest distance from the //candidate to any of the already chosen points .reduce((prev, current) => (current[2] < prev[2])? current: prev, [0,0,this.maxDist])[2] ]) //then pick the candidate that has the largest minimum distance from the group of candidates .reduce((prev, current) => prev == null? current: ((current[2] > prev[2])? current: prev), null) //and set the 3rd position to its own radius instead of the distance to the nearest point .map((v, i, arr) => i < 2? v: radiusFunction(arr[0], arr[1], v)) ////and remove the distance before promoting the candidate //.filter((i, k) => k < 2) } if(tries == maxTries) return false; //add a point to the list this.pts.push(pt); yield pt; } } } return new UniformPointDistributor(leftTop, rightBottom); }