A turtle is walking through a curl noise field.
Log in to post a comment.
// Forked from "Curl Noise" by reinder // https://turtletoy.net/turtle/740f09b88c // Curl Noise. Created by Reinder Nijhoff 2021 - @reindernijhoff // // https://turtletoy.net/turtle/740f09b88c // const turtle = new Turtle(); turtle.degrees(Math.PI * 2); turtle.traveled = 0; const seed = 69; // min=1, max=100, step=1 const radius = 0.29; // min=0.1, max=5, step=0.01 const maxPathLength = 50; // min=1, max=100, step=0.1 const frequency = 10; //min=.1, max=10, step=.01 const maxTries = 20; //min=10, max=1000, step=1 const noise = new SimplexNoise(seed); const grid = new PoissonDiscGrid(radius); function fbm(x, y) { x *= frequency / 1000; y *= frequency / 1000; let f = 1., v = 0.; for (let i=0; i<3; i++) { v += noise.noise2D([x * f, y * f]) / f; f *= 2; x += 32; } return v; } function curlNoise(x, y) { const eps = 0.01; const dx = (fbm(x, y + eps) - fbm(x, y - eps))/(2 * eps); const dy = (fbm(x + eps, y) - fbm(x - eps, y))/(2 * eps); const l = Math.hypot(dx, dy) / radius * .99; return [dx / l, -dy / l]; } function walk(i) { const p = turtle.pos(); const curl = curlNoise(p[0], p[1]); const dest = [p[0]+curl[0], p[1]+curl[1]]; if (turtle.traveled < maxPathLength && Math.abs(dest[0]) < 110 && Math.abs(dest[1]) < 110 && grid.insert(dest)) { turtle.goto(dest); turtle.traveled += Math.hypot(curl[0], curl[1]); } else { turtle.traveled = 0; let r, i = 0; do { r =[Math.random()*200-100, Math.random()*200-100]; i ++; } while(!grid.insert(r) && i < maxTries); if (i >= maxTries) { return false; } turtle.jump(r); } return true; } //////////////////////////////////////////////////////////////// // Simplex Noise utility code. Created by Reinder Nijhoff 2020 // https://turtletoy.net/turtle/6e4e06d42e // Based on: http://webstaff.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf //////////////////////////////////////////////////////////////// function SimplexNoise(seed = 1) { const grad = [ [1, 1, 0], [-1, 1, 0], [1, -1, 0], [-1, -1, 0], [1, 0, 1], [-1, 0, 1], [1, 0, -1], [-1, 0, -1], [0, 1, 1], [0, -1, 1], [0, 1, -1], [0, -1, -1] ]; const perm = new Uint8Array(512); const F2 = (Math.sqrt(3) - 1) / 2, F3 = 1/3; const G2 = (3 - Math.sqrt(3)) / 6, G3 = 1/6; const dot2 = (a, b) => a[0] * b[0] + a[1] * b[1]; const sub2 = (a, b) => [a[0] - b[0], a[1] - b[1]]; const dot3 = (a, b) => a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; const sub3 = (a, b) => [a[0] - b[0], a[1] - b[1], a[2] - b[2]]; class SimplexNoise { constructor(seed = 1) { for (let i = 0; i < 512; i++) { perm[i] = i & 255; } for (let i = 0; i < 255; i++) { const r = (seed = this.hash(i+seed)) % (256 - i) + i; const swp = perm[i]; perm[i + 256] = perm[i] = perm[r]; perm[r + 256] = perm[r] = swp; } } noise2D(p) { const s = dot2(p, [F2, F2]); const c = [Math.floor(p[0] + s), Math.floor(p[1] + s)]; const i = c[0] & 255, j = c[1] & 255; const t = dot2(c, [G2, G2]); const p0 = sub2(p, sub2(c, [t, t])); const o = p0[0] > p0[1] ? [1, 0] : [0, 1]; const p1 = sub2(sub2(p0, o), [-G2, -G2]); const p2 = sub2(p0, [1-2*G2, 1-2*G2]); let n = Math.max(0, 0.5-dot2(p0, p0))**4 * dot2(grad[perm[i+perm[j]] % 12], p0); n += Math.max(0, 0.5-dot2(p1, p1))**4 * dot2(grad[perm[i+o[0]+perm[j+o[1]]] % 12], p1); n += Math.max(0, 0.5-dot2(p2, p2))**4 * dot2(grad[perm[i+1+perm[j+1]] % 12], p2); return 70 * n; } hash(i) { i = 1103515245 * ((i >> 1) ^ i); const h32 = 1103515245 * (i ^ (i>>3)); return h32 ^ (h32 >> 16); } } return new SimplexNoise(seed); } //////////////////////////////////////////////////////////////// // Poisson-Disc utility code. Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/b5510898dc //////////////////////////////////////////////////////////////// function PoissonDiscGrid(radius) { class PoissonDiscGrid { constructor(radius) { this.cellSize = 1/Math.sqrt(2)/radius; this.radius2 = radius*radius; this.cells = []; } insert(p) { const x = p[0]*this.cellSize|0, y=p[1]*this.cellSize|0; for (let xi = x-1; xi<=x+1; xi++) { for (let yi = y-1; yi<=y+1; yi++) { const ps = this.cell(xi,yi); for (let i=0; i<ps.length; i++) { if ((ps[i][0]-p[0])**2 + (ps[i][1]-p[1])**2 < this.radius2) { return false; } } } } this.cell(x, y).push(p); return true; } cell(x,y) { const c = this.cells; return (c[x]?c[x]:c[x]=[])[y]?c[x][y]:c[x][y]=[]; } } return new PoissonDiscGrid(radius); }