I added a method to the path utility class so you can calculate the distance to a path. This function is slow: it divides all bezier curves into segments and calculates the distance to each segment separately.
If you use this distance function in your turtle, you should probably implement some cache.
Log in to post a comment.
// Distance to path. Created by Reinder Nijhoff 2023 - @reindernijhoff // The MIT License // // https://turtletoy.net/turtle/b8caf5b1f5 // const pathInput = `M100,-80 C-120,-80 -120,0 0,0 C120,0 120,80 -100,80`; // type=path, Click here to redraw the path const grid = 11; // min=5, max=50, step=1 const drawmode = 2; // min=0, max=2, step=1, (Gradient, Curl, Flow field) const radius = 1.3; // min=0.1, max=5, step=0.01 const maxPathLength = 50; // min=1, max=100, step=0.1 const maxTries = 1000; const precision = .75; const eps = .01; const path = Path(pathInput); const turtle = new Turtle(); const pGrid = new PoissonDiscGrid(radius); function walk(i) { if (drawmode <= 1) { const x = i % grid; const y = i / grid | 0; const p = [(x+1) * 200 / (grid+1) - 100, (y+1) * 200 / (grid+1) - 100]; const d = path.distance(p); const dx = (path.distance([p[0]+eps, p[1]]) - d)/eps; const dy = (path.distance([p[0], p[1]+eps]) - d)/eps; if (drawmode == 0) { drawArrow(p, [dx, dy]); } else { drawArrow(p, [-dy, dx]); } return i < grid * grid - 1; } else { const p = turtle.pos(); const curl = flowField(p); const dest = [p[0]+curl[0], p[1]+curl[1]]; if (turtle.traveled < maxPathLength && Math.abs(dest[0]) < 110 && Math.abs(dest[1]) < 110 && pGrid.insert(dest)) { turtle.goto(dest); turtle.traveled += Math.hypot(curl[0], curl[1]); } else { turtle.traveled = 0; let r, i = 0; do { r =[Math.random()*200-100, Math.random()*200-100]; i ++; } while(!pGrid.insert(r) && i < maxTries); if (i >= maxTries) { return false; } turtle.jump(r); } return true; } } function drawArrow(p, dir) { dir = scale(dir, 100/grid); p = add(p, scale(dir, -0.5)); const end = add(p, dir); const hw = lerp(p, end, .6); turtle.jump(p); turtle.goto(end); turtle.goto(add(hw, scale([dir[1], -dir[0]], .2))); turtle.jump(end); turtle.goto(add(hw, scale([-dir[1], dir[0]], .2))); } function flowField(p) { const [x, y] = p; const dx = (path.distance([x, y + eps]) - path.distance([x, y - eps]))/(2 * eps); const dy = (path.distance([x + eps, y]) - path.distance([x - eps, y]))/(2 * eps); const l = Math.hypot(dx, dy) / radius * .99; return [dx / l, -dy / l]; } function scale(a,b) { return [a[0]*b,a[1]*b]; } function add(a,b) { return [a[0]+b[0],a[1]+b[1]]; } function lerp(a,b,t) { return [a[0]*(1-t)+b[0]*t,a[1]*(1-t)+b[1]*t]; } //////////////////////////////////////////////////////////////// // Poisson-Disc utility code. Created by Reinder Nijhoff 2019 // https://turtletoy.net/turtle/b5510898dc //////////////////////////////////////////////////////////////// function PoissonDiscGrid(radius) { class PoissonDiscGrid { constructor(radius) { this.cellSize = 1/Math.sqrt(2)/radius; this.radius2 = radius*radius; this.cells = []; } insert(p) { const x = p[0]*this.cellSize|0, y=p[1]*this.cellSize|0; for (let xi = x-1; xi<=x+1; xi++) { for (let yi = y-1; yi<=y+1; yi++) { const ps = this.cell(xi,yi); for (let i=0; i<ps.length; i++) { if ((ps[i][0]-p[0])**2 + (ps[i][1]-p[1])**2 < this.radius2) { return false; } } } } this.cell(x, y).push(p); return true; } cell(x,y) { const c = this.cells; return (c[x]?c[x]:c[x]=[])[y]?c[x][y]:c[x][y]=[]; } } return new PoissonDiscGrid(radius); } //////////////////////////////////////////////////////////////// // Modified path utility code. Created by Reinder Nijhoff 2023 // // Added a distance method // // Parses a single SVG path (only M, C and L statements are // supported). The p-method will return // [...position, ...derivative] for a normalized point t. // // https://turtletoy.net/turtle/46adb0ad70 //////////////////////////////////////////////////////////////// function Path(svg) { function lenSquare(a) { return a[0]**2 + a[1]**2; } function dot(a, b) { return a[0]*b[0]+a[1]*b[1]; } function distSegmentSquare(p, a, b ) { const pa = [p[0]-a[0], p[1]-a[1]], ba = [b[0]-a[0], b[1]-a[1]]; const h = Math.max(0, Math.min(1, dot(pa,ba)/dot(ba,ba))); return lenSquare( [pa[0] - ba[0]*h, pa[1] - ba[1]*h] ); } class MoveTo { constructor(p) { this.p0 = p; } p(t, s) { return [...this.p0, 1, 0]; } length() { return 0; } distSquare(p, res) { return lenSquare([p[0]-this.p0[0], p[1]-this.p0[1]]); } } class LineTo { constructor(p0, p1) { this.p0 = p0, this.p1 = p1; } p(t, s = 1) { const nt = 1 - t, p0 = this.p0, p1 = this.p1; return [ nt*p0[0] + t*p1[0], nt*p0[1] + t*p1[1], (p1[0] - p0[0]) * s, (p1[1] - p0[1]) * s, ]; } length() { const p0 = this.p0, p1 = this.p1; return Math.hypot(p0[0]-p1[0], p0[1]-p1[1]); } distSquare(p, res) { return distSegmentSquare(p, this.p0, this.p1); } } class BezierTo { constructor(p0, c0, c1, p1) { this.p0 = p0, this.c0 = c0, this.c1 = c1, this.p1 = p1; } p(t, s = 1) { const nt = 1 - t, p0 = this.p0, c0 = this.c0, c1 = this.c1, p1 = this.p1; return [ nt*nt*nt*p0[0] + 3*t*nt*nt*c0[0] + 3*t*t*nt*c1[0] + t*t*t*p1[0], nt*nt*nt*p0[1] + 3*t*nt*nt*c0[1] + 3*t*t*nt*c1[1] + t*t*t*p1[1], (3*nt*nt*(c0[0]-p0[0]) + 6*t*nt*(c1[0]-c0[0]) + 3*t*t*(p1[0]-c1[0])) * s, (3*nt*nt*(c0[1]-p0[1]) + 6*t*nt*(c1[1]-c0[1]) + 3*t*t*(p1[1]-c1[1])) * s, ]; } length() { return this._length || ( this._length = Array.from({length:25}, (x, i) => this.p(i/25)).reduce( (a,c,i,v) => i > 0 ? a + Math.hypot(c[0]-v[i-1][0], c[1]-v[i-1][1]) : a, 0)); } distSquare(p, res) { // super slow, probably better to use an analytical solution if exists const segments = Math.max(1, this.length()/res | 0); const p0 = this.p0, c0 = this.c0, c1 = this.c1, p1 = this.p1; let a = [...p0]; let dist = 1e10; for (let i=1; i<=segments; i++) { const t = i/segments, nt = 1 - t; const b = [ nt*nt*nt*p0[0] + 3*t*nt*nt*c0[0] + 3*t*t*nt*c1[0] + t*t*t*p1[0], nt*nt*nt*p0[1] + 3*t*nt*nt*c0[1] + 3*t*t*nt*c1[1] + t*t*t*p1[1] ]; dist = Math.min(dist, distSegmentSquare(p, a, b)); a = [...b]; } return dist; } } class Path { constructor(svg) { this.segments = []; this.parsePath(svg); } parsePath(svg) { const t = svg.match(/([0-9.-]+|[MLC])/g); for (let s, i=0; i<t.length;) { switch (t[i++]) { case 'M': this.add(new MoveTo(s=[t[i++],t[i++]])); break; case 'L': this.add(new LineTo(s, s=[t[i++],t[i++]])); break; case 'C': this.add(new BezierTo(s, [t[i++],t[i++]], [t[i++],t[i++]], s=[t[i++],t[i++]])); break; default: i++; } } } add(segment) { this.segments.push(segment); this._length = 0; } length() { return this._length || (this._length = this.segments.reduce((a,c) => a + c.length(), 0)); } p(t) { t = Math.max(Math.min(t, 1), 0) * this.length(); for (let l=0, i=0, sl=0; i<this.segments.length; i++, l+=sl) { sl = this.segments[i].length(); if (t > l && t <= l + sl) { return this.segments[i].p((t-l)/sl, sl/this.length()); } } return this.segments[Math.min(1, this.segments.length-1)].p(0); } distance(p, res = 3) { return Math.sqrt(this.segments.reduce((a,c) => Math.min(a, c.distSquare(p, res)), 1e10)); } } return new Path(svg); }